
Analyzing the
Multimedia
Operating
System

Ralf Steinmetz
IBM European Networking Center

-
What makes an
operating system
able to handle
multimedia? This
survey outlines
the main features
an operating
system must
possess-from
resource
management to
file system
issues-with an
emphasis on
scheduling, and it
provides a vision
of the optimal
multimedia
system
architecture.

he operating system shields the com-
puter hardware from all other software.
It provides a comfortable environment T for program execution and ensures

effective use of hardware. The operating system
offers various services related to the essential
resources, such as the CPU, main memory, storage,
and all input and output devices. Integrating dis-
crete and continuous multimedia data demands
additional services from operating system compo-
nents, especially real-time processing of continu-
ous-media data. This survey focuses on basic
concepts and internal tasks of a multimedia oper-
ating system because application interfaces are
often implementation- and product-specific and
change rapidly, while the fundamental mecha-
nisms will remain the same for at least the near
future.’ A broader discussion of the most important
aspects of multimedia appears elsewhere.*,’

This article surveys the unique services multi-
media systems require of their operating systems.
First it presents a model of the processing of con-
tinuous-media data. Then it shows how process
management must take into account the timing
requirements imposed by real-time and non-real-
time multimedia data and apply appropriate
scheduling methods. To accommodate timing
requirements, resource management treats single
components as resources reserved prior to data
processing. File management services provide
access to single files and file systems. Memory

management provides access to data with guar-
anteed timing delay and efficient data manipula-
tion functions. Resolving all these issues leads to
an optimal architecture for multimedia systems.

Process management
Process management deals with the main

processor resource, whose capacity is specified as
processor capacity. The process manager maps sin-
gle processes onto the CPU resource according to
a specified scheduling policy such that all process-
es meet their requirements.

The main characteristic of real-time systems is
the need for correctness. This applies not only to
errorless computation, but also to the time at
which the result is presented. Hence, a real-time
system can fail not only because of massive hard-
ware or software failures, but also because the sys-
tem is unable to execute its critical workload in
time.4 When a system acts deterministically, it
adheres to previously defined time spans for data
manipulation; that is, it guarantees a response
time. Speed and efficiency are not, as often
assumed, the main characteristics of a real-time
system. For example, the playback of a video
sequence in a multimedia system is acceptable
only when the video is presented neither too fast
nor too slow. Multimedia systems must also con-
sider timing and logical dependencies, both inter-
nal and external, among different, related tasks
processed at the same time. In the context of
multimedia data streams, this refers to the pro-
cessing of synchronized audio and video data
where the timing relation between the two media
has to be considered.

Audio and video data streams consist of single,
periodically changing values of continuous-media
data, such as audio samples or video frames. Each
logical data unit must be presented at a specific
deadline. Jitter is allowed only before, not during,
the final presentation. A piece of music, for exam-
ple, must be played back with constant speed.
However, recent research at IBM Heidelberg
showed that users may not perceive a slight jitter
at media presentation, depending on the medium
and the application.i

Today’s operating systems will form the base of
continuous-media processing on workstations and
personal computers for years to come. The market
will be reluctant to accept newly developed multi-
media operating systems; therefore, existing mul-
titasking systems must cope with multimedia data
handling, as the sidebar “Multitasking real-time
processes” explores.

1070-986X/95/$4.00 0 1995 IEEE

I For many applications, missing a deadline in a '
multimedia system is, though regrettable, not a
severe failure. It may even go unnoticed: I f an
uncompressed video frame i s not prepared on
time, it can simply be omitted, assuming this
does not happen for a contiguous sequence of
frames. (Audio requirements are more stringent
because the human ear i s more sensitive to audio
gaps than the human eye i s to video jitter.)

Unix and its variants, Micmsdt's Windows, Apple's System 7,
and IBM's OS/2, in descending order, are the most widely
installed operating systems with multimedia capabilities.
Although some include special priority classes for real-time
processes, this is not sufficient for multimedia applications. For
example, one group of researchers tested the SVR4 Unix sched-
uler, which provides a real-time static priority scheduler in addi-
tion to a standard Unix time-sharing scheduler.' The test ran
three applications concurrently: "typing," an interactive appli-
cation; "video," a continuous-media application; and a batch
program. Only through trial and error did the SVR4 scheduler
find a particular combination of priorities and scheduling class
assignments that worked for a specific application set. This indi-
cates a need for additional features for scheduling multimedia
data processing.

OS/2 offers three possible models for multimedia support.
First, the device-drivers-as-process-manager approach imple-
ments operating system extensions for continuous-media pro-
cessing as physical device drivers (PDDs). In this approach, a
real-time scheduler and the process manager run as PDDs acti-
vated by a high-resolution timer. In principle, this is the imple-
mentation scheme of the OS/2 Multimedia Presentation
Manager, the multimedia extension to OS/2.

Second, when an enhanced system scheduler functions as the
process manager, it can process time-critical tasks together with
normal applications running in ring 3, the OS/2 user space. Each
real-time task is assigned to a thread running in the time-critical
priority class. (In OS/2, a thread is equivalent to a process in the
overall discussion.) A thread is interrupted if another thread with
higher priority-there are 32 levels-requires processing.
Noncritical applications run as threads in the regular class, which

also has 32 priorities. They are dispatched by the operating sys-
tem scheduler according to their priority: For fairness, the sched-
uler itself may rearrange priorities of threads running in this class.

The main advantage of this second approach is the control
and coordination of all time-critical threads through a higher
instance, the system scheduler. This instance, running with a
higher priority than all other threads, controls and coordinates
threads according to the adapted scheduling algorithm and the
respective processing requirements. It can observe the runtime
behavior of single threads. Another entity, the resource manag-
er, determines feasible schedules, takes care of quality-of-service
calculation and resource reservation, and regulates competition
for the CPU. An internal scheduling strategy and resource man-
agement allows processing guarantees, but it requires that the
native scheduler be enhanced and that no other user assigns
time-critical threads.

Third, in the metascheduler-as-process-manager approach,
the normal priority-driven system scheduler schedules all tasks.
A metascheduler then assigns priorities to real-time tasks. Non-
time-critical tasks are processed when no time-critical task is
ready for execution. Many Unix systems use this metascheduler
approach. However, in an integrated system, the management
of continuous-data processes will not require a metascheduler;
it will be part of the system process manager itself.

Reference
1. I. Nieh et al., "SVR4Unix Scheduler Unacceptable for

Multimedia Applications," Proc. 4th lnt7 Workshop on
Network and Operating System Support for Digital Audio and
Video, Springer-Verlag, Berlin, 1993; appeared as Lecture
Notes in Computer Science, Vol. 846, Springer-Verlag, 1994.

Scheduling
To fulfill the timing requirements of continu-

ous media, t h e operating system must use real-
time scheduling techniques. Traditional real-time
scheduling techniques, used for command and
control systems in application areas such as fac-
tory automation or aircraft piloting, demand high
security and fault tolerance. These demands often
conflict with real-time scheduling efforts applied
to continuous media. Multimedia systems outside
of traditional real-time scenarios have different-
in fact, more favorable-real-time requirements:

1 The fault-tolerance requirements of multimedia
systems are usually less strict than those of real-
t ime systems with a direct physical impact. A
short-time failure of a continuous-media sys-
tem, such as a delay in delivering video-on-
demand, will not directly lead to the destruction

of technical equipment or constitute a threat to
human life (with the exception of applications
such as support of remote surgery).

I A sequence of digital continuous-media data
results from periodically sampling a sound or
image signal. Hence, in processing the data
units of such a data sequence, al l time-critical
operations are periodic. Scheduling periodic

The Advanced Real-Time Technology Operating System
(ARTS) is a real-time operating system for a distributed environ-
ment with one real-time process manager, developed by the
Computer Science Department of Camegie Mellon University. It
runs a network of Sun 3 workstations, connected with a real-time
network based on the IEEE 802.5 token ring and Ethernet. To
solve scheduling problems, the ARTS developers adopted a time-
driven scheduler (TDS) with a priority inheritance protocol. This
protocol prevents unbounded priority inversion among com-
munication tasks. Tasks with hard deadlines are scheduled
according to the rate-monotonic algorithm, with other schedul-
ing methods included for experimental reasons.'

Yet Another Real-Time Operating System was developed at the
University of North Carolina a t Chapel Hill as an operating system
kernel to support teleconferencing applications? YARTOS includes
an optimal, preemptive algorithm to schedule tasks on a single
processor and an integrated synchronization scheme to access
shared resources with the EDF algorithm. Here, a task has two
notions of deadline, one for the initial acquisition of the processor

cy, and low jitter. The isochronous class-with the highest pri-
ority-applies the rate-monotonic algorithm, while the real-time
and the general-purpose classes use the weighted round-robin
scheme. The scheduler executes tasks from a ready queue in
which all isochronous tasks are arranged according to their pri-
ority. At the arrival of a task, the scheduler determines whether
the currently running task has to be preempted. Ceneral-pur-
pose tasks are immediately preempted, real-time tasks are pre-
empted in the next preemption window, and isochronous tasks
are preempted in the next preemption window if their priority is
lower than that of the new task. Whenever the queue is empty,
the scheduler alternates between executing the real-time and
general-purpose classes.

IBM's European Networking Center in Heidelberg developed
a metascheduler for the operating systems AIX and OS/2 to sup
port real-time processing of continuous media.s Rates are
mapped onto system priorities according to the rate-monotonic
algorithm. Experience with the OS/2 metascheduler shows the
limits of this approach. For example, each single process in the

and one for execution of operations on resources. To avoid prior-
ity inversion, tasks receive separate deadlines for performing oper-
ations on shared resources. No shared resource can be accessed
simultaneously by more than one task, and even a single task only
occupies a shared resource as long as absolutely necessary.

The split-level scheduler was developed within the DASH pro-
ject at the University of California a t Berkeley to provide better
support for multimedia application^.^ It applies a deadline/work-
ahead scheduling policy under which critical processes have pri-
ority over all other processes and are scheduled preemptively
according to the EDF algorithm. Interactive processes have pri-
ority over work-ahead processes as long as they do not become
critical. The scheduling policy for work-ahead processes is unspec-
ified but may be chosen to minimize context switching. Non-real-
time processes use a scheduling strategy like Unix time-slicing.

on-demand file service at Digital Equipment Corp. The design of
the scheduler is based on a combination of weighted round-
robin and rate-monotonic scheduling that supports three class-
es of schedulable A general-purpose task is preemptable
and runs with a low priority. The real-time class is suitable for
tasks that require guaranteed throughput and bounded delay.
The isochronous class supports real-time periodic tasks that
require performance guarantees for throughput, bounded laten-

system can run with a priority initially intended for real-time
tasks. These processes are not scheduled by the resource man-
ager and therefore violate the calculated schedule. A malicious
process can block the whole system simply by running with the

.
shop on RwCfime Programming, Pergamon Press, 1991.

3. D.P. Anderson, "MetaScheduling for Distributed Continuous
Media," ACM Trans. on Computer Systems, Vol. 1 1, No. 3,

The three-class scheduler was developed as part of a video- Aug. 1993, pp. 226-252.
4. K.K. Ramakrishnan et al., "Operating System Support for a

Video-On-Demand File Service," froc. 4th lnt7 Workshop on
Network and Operating System Support for Digital Audio and
Video, Springer-Verlag, Berlin, 1993, pp. 225-236.

5. A. Mauthe, W. Schulz, and R. Steinmetz, lnside the
Heidelberg Multimedia Operating System Support: Real-Time
Processing of Continuous Media in OS/2, IBM Tech. Report
43.921 4, 1992.

tasks is much easier than scheduling sporadic
ones.6

I The bandwidth demand of continuous media
is not always that stringent. Since some com-
pression algorithms can employ different com-
pression ratios for different qualities, the

required bandwidth can be negotiated. If not
enough bandwidth is available for full quality,
the application can accept a reduced quality
over no service at all. The quality may also be
adjusted dynamically to the available band-
width, by changing encoding parameters, for
example. This is known as scalable video.

In a traditional real-time system, timing
requirements result from the physical characteris-
tics of the technical process to be controlled: They
are provided externally. Some multimedia applica-
tions must meet external requirements, too. A dis-
tributed music rehearsal is one example: Music
played by one musician on an instrument con-
nected to his workstation has to be made available
to all other members of the orchestra within a few
milliseconds, or the underlying knowledge of a
global unique time is disturbed.

If human users are involved just in the input or
output of continuous media, delay bounds are more
flexible. Consider the playback of a video from a
remote disk. The delay of a single video frame trans-
ferred from the disk to the monitor is unimportant.
Frames must only arrive in a regular fashion. Users
will notice any difference in delay only as an initial
delay in response to their “start play” commands.

Most multimedia operating systems apply one
of the methods discussed above. Some systems,
such as those discussed in the sidebar “Scheduling
experiments,” replace the scheduler with a real-
time scheduler. These systems can be viewed as
new operating systems because they are usually
not compatible with existing systems and appli-
cations. Other systems apply a metascheduler
based on an existing process manager. Only these
systems will have a commercial impact in the
short and medium terms because they can run
existing applications.

Processing requirements
Continuous-media data processing has to

occur in precisely predetermined, periodic inter-
vals. Operations on this data recur over and over
and must be completed at certain deadlines. The
real-time process manager determines a schedule
that allows the resource CPU to make reservations
and to give processing guarantees. The problem is
finding a feasible schedule that allows all time-
critical, continuous-media tasks to meet their
deadlines. This must be guaranteed for all tasks in
every period for the whole runtime of the system,
since a multimedia system processes continuous
and discrete media data concurrently.

A system scheduling multimedia tasks must
consider two conflicting goals. On the one hand,
noncritical process should not suffer unnecessari-
ly because of time-critical processes. Multimedia
applications rely as much on text and graphics as
on audio and video. On the other hand, a time-
critical process must never experience priority
inversion, either between critical and noncritical

tasks or between time-critical processes with dif-
ferent priorities.

Apart from the overhead caused by the schedu-
lability test and the connection establishment, the
cost of scheduling every message must be mini-
mized. Such costs are critical because they occur
periodically with every message at the start of real-
time processing. The overhead generated by the
scheduler and the operating system adds to the
processing time, so should also be minimized. The
timing behavior of the operating system and its
influence on the scheduling and processing of
time-critical data can lead to time-garbled appli-
cations. Therefore, operating systems in real-time
systems cannot be assessed separately from the
application programs, and vice versa.

Preemptable versus nonpreemptable task
scheduling

The problems involved in attaining real-time
processing are widely known in computer sci-
e n ~ e . ~ The goals of traditional scheduling on time-
sharing computers are optimal throughput,
optimal resource utilization, and fair queuing. In
contrast, the main goal of real-time tasks is to pro-
vide a schedule that allows as many time-critical
processes as possible to be processed in time to
meet their deadlines. The scheduling algorithm
has to map tasks onto resources so that all tasks
meet their time requirements.

One reason tasks are usually treated as pre-
emptable is that for some task sets nonpreempt-
able scheduling is impossible, where preemptable
scheduling might be possible. Figure 1 (next page)
shows such an example.

Nagarajan and Vogt introduced the first
schedulability test for nonpreemptable tasks.8
They proved that a set of m periodic streams with
periods p,, deadlines d,, and processing times e,,
where a‘, 5 pr V i E (1, . . ., m), is schedulable if the
time between the logical arrival time and the
deadline of a task t, is larger than or equal to the
sum of the set’s processing time e, and the pro-
cessing time of any higher priority task that
requires execution during that time interval plus
the longest processing time of all lower and high-
er priority tasks that might be serviced at the
arrival of the task t,. The schedulability test is an
extension of Liu and Layland’s.’ Consequently,
nonpreemptable continuous-media tasks can also
be scheduled. However, the scheduling of non-
preemptable tasks is less favorable than for pre-
emptable tasks because the number of schedulable
task sets is smaller.

VI s.
3

IC)

\o
\o ul

Deadlines
dA dB

d l d2 d3 d4 d5 d6 d7 d8

unknown timing). A real-
time system has the per-
manent task of receiving
information spontaneous-
ly or periodically from the
environment and deliver-
ing the processed data
back to the environment
on time.

For the purposes of dis-
cussion, I evaluated all
scheduling algorithms
here using the following
real-time system model,
whose essential compo-
nents are resources, tasks,
and scheduling goals. A

Figure 1 . Preemptable
scheduling methods
often succeed in making
a workable schedule
where nonpreemptable
methods fail, as this
diagram of rate-
monotonic scheduling
shows.

To achieve full real-time capabilities, we must
at least extend the native scheduler of the operat-
ing system. The operating system should be
enhanced with a class of fast, nonpreemptable
threads and the ability to mask interrupts for a
short period of time. Priorities in this thread class
should only be assigned to threads already regis-
tered by the resource manager and monitored by a
system component with extensive control facili-
ties. Another possibility is to enhance the perfor-
mance of the scheduler itself by incorporating
some mechanisms of real-time scheduling like
EDF. In any case, the operating system should pro-
vide a time measurement tool that allows the
measurement of pure CPU-time and a timer with
a finer granularity.

System model
Because the essential aspect of any multimedia

operating system is real-time operation, I will first
establish a common, basic definition of real time
as it relates to multimedia. The German National
Institute for Standardization (DIN), similar to the
American National Standards Institute (ANSI),
defines a real-time process in a computer system
as “a process which delivers the results of the pro-
cessing in a given time-span.” Data processing
programs must be available during the entire run-
time of the system, since the data may require
processing at unexpected times.

The real-time system must enforce externally
defined time constraints while considering inter-
nal dependencies and their related time limits.
External events occur, depending on the applica-
tion, either deterministically (at a predetermined
instant) or stochastically (randomly, with

* trzsk is a schedulable sys-
tem entity, corresponding to the notion of a
thread or a process. A periodic task is one that
sends consecutive requests at constant intervals.
A real-time system characterizes a task by its tim-
ing constraints as well as its resource require-
ments. The system model I used covers only
periodic tasks without precedence constraints, in
which the processing of two tasks is mutually
independent, which poses no restriction for
multimedia systems. Today, the playback of syn-
chronized data, for example, requires only a sin-
gle process in most of the available multimedia
systems. On the other hand, a playback of syn-
chronized streams by two or more processes is, in
general, not a problem because related streams
allow for a certain skew. This skew is usually high-
er than both the accuracy of scheduling-the
granzrlarity of the system-and the period time p .

We can define the time constraints of the peri-
odic task T by 0 i e < d i p , where e is the process-
ing time, tl is the deadline, and p is the period of
T. The rate r of T equals l l p . The starting point s
is the first time where the periodic task requires
processing (see Figure 2). After that, it requires
processing at intervals of e.

At s + (k - l)p, the task Tis ready for processing
in period k . This processing must be finished at
s + (k - 1)p + (1. For continuous-media tasks, we
can assume that the deadline of the period (k - 1)
is the ready time of period k . This is known as con-
gestion-avoiding deadlines: The deadline for each
message coincides with the period of the respec-
tive periodic task.

Tasks can be preemptable or nonpreemptable.
A preemptable task can be interrupted by any task
with a higher priority, later continuing processing

at the interruption point. A nonpreemptable task,
in contrast, cannot be interrupted until it volun-
tarily yields the processor. Any high-priority task
has to wait until the low-priority nonpreemptable
task is finished. In such a case, the high-priority
task suffers priority inversion. For our purposes,
therefore, all tasks processed on the CPU are con-
sidered preemptable unless otherwise stated.

In a real-time system, the scheduling algorithm
must parcel out an exclusive, limited resource that
different processes use concurrently such that all
tasks can be processed without violating any dead-
lines. This notion can be extended to a model
with multiple resources of the same type, such as
a multiprocessor system. It can also cover differ-
ent resources such as menlory and bandwidth. A
scheduling algorithm guc?rcintees a newly arrived
task when it can find a schedule where in every
period over the whole runtime, the new task and
all previously guaranteed tasks can finish process-
ing by their deadlines.“’ To do this, the algorithm
must be able to check the schedulability of the
newly arrived tasks. A scheduling algorithm can
use the processor utilization-the amount of pro-
cessing time used by guaranteed tasks over the
total amount of processing time-as a perfor-
mance metric.’

A Earliest deadline first
Most attempts to solve real-time scheduling

problems are just variations on two basic algo-
rithms for multimedia systems: earliest deadline
first and rate-monotonic scheduling. The earliest-
deadline-first (EDF) algorithm is the best-known
algorithm for real-time processing. At any arrival
of a new task, EDF immediately computes a new
order; that is, it preempts the running task and
schedules the new task according to its deadline.
Processing of the interrupted task continues later.
EDF handles not only periodic tasks, but also tasks
with arbitrary requests, deadlines, and service exe-
cution times. However, in an arbitrary case of an
overload situation, EDF cannot guarantee the pro-
cessing of any task.

EDF is an optimal, dynamic algorithm. A
tlyririmic algorithm schedules every instance of
each incoming task according to its specific
demands; it may reschedule periodic tasks in each
period. For a dynamic algorithm like EDF, the
upper bound of processor utilization is 100 per-
cent. EDF is optimal in the sense that if a set of
tasks can be scheduled by any priority assign-
ment, it also can be scheduled by EDF.

When a single-processor machine with priority

scheduling applies EDF to the scheduling of con-
tinuous-media data, process priorities are likely to
be rearranged quite often. A priority-driven sys-
tem scheduler like EDF assigns each task a priority
according to its deadline. The highest priority is
assigned to the task with the earliest deadline, the
lowest to the one with the furthest. Common EDF
systems usually provide only a restricted number
of priorities. If EDF has already assigned the pri-
ority needed for a new process, the scheduler must
rearrange the priorities of other processes until the
required priority is free. In the worst case, the pri-
orities of all processes have to be rearranged,
which may cause considerable overhead.

An extension of EDF is the time-driven sched-
uler, which schedules tasks by deadlines instead
of priorities. TDS handles overload situations by
aborting tasks that can no longer meet their dead-
lines. If the situation continues, the scheduler
removes tasks with a low “value density”-the
importance of a task to the system.

Periodic task T -
o s

Another priority-driven EDF scheduling algo-
rithm” divides every task into a mandatory and
an optional part. Tasks are scheduled with respect
to the deadlines of their mandatory parts. A set of
tasks is schedulable if all mandatory parts can
meet the deadlines. A task is terminated accord-
ing to the deadline of the mandatory part even if
the task has not yet completed; the optional parts
are then processed if the resource capacity is not
fully utilized.

In the case of continuous-media data, this
method can be combined with the encoding of
data according to their importance. Take, for
example, a single uncompressed picture in a
bitmap format. Each pixel of this monochrome
picture is coded with 16 bits. The processing of the
eight most significant bits is mandatory, whereas
the processing of the eight least significant bits
can be considered optional. This method allows
more processes to be scheduled. In an overload sit-
uation, the optional parts are aborted according
to quality-of-service requirements (see “Negotiat-
ing QOS,” below), decreasing the quality through
media scaling. Alternatively, the user can intro-

Figure 2. Any
multimedia operating
system must take into
account the time
constraints of the
periodic task T, where
s = startingpoint,
e =processing time,
d = deadline, and
p =period.

v)
\o ul

duce QOS scaling parameter(s) that reflect the
implementation. Overall, this approach avoids
errors and improves system performance at the
expense of media quality.

Rate monotonic algorithm
The rate-monotonic scheduling principle,

introduced by Liu and Layland in 1973,9 is a stat-
ic algorithm applied in real-time systems and
operating systems by the National Aeronautics
and Space Administration and the European Space
Agency. It assigns static priorities to tasks at the

task do not depend on the initiation or com-
pletion of requests for any other task.

4. Runtime for each request of a task-the maxi-
mum time a processor requires to execute the
task without interruption-is constant.

5.Any nonperiodic task in the system has no
required deadline. Typically such tasks initiate
periodic or failure recovery tasks. They usual-
ly displace periodic tasks.

Deadlines dA d R _. . --
d l d2 d3 d4 d5

High

Low

EDF

Rate

Figure 3. Of the
preemptive schedulers,
rate monotonic i s more
prone to context
switching-changing
over from processing
video (lettered blocks) to
processing audio
(numbered blocks)-
than EDF.

dC
d h

Further work has shown
that not all of these
assumptions are always
mandatory to employ the
rate monotonic algo-
rithm. *] , I 2

EDF versus rate
monotonic

Consider an audio and
a video stream scheduled
according to the rate
monotonic algorithm. Let
the audio stream have a
rate of 75 blocks of sam-
ples per second and the

connection setup phase according to their request
rates. Subsequently, each task is processed with
the priority calculated at the beginning, with no
further rearrangement of priorities required. The
priority corresponds to the importance of a task
relative to other tasks.

The task with the shortest period gets the high-
est priority, and the task with the longest period
gets the lowest priority. It is an optimal, static, pri-
ority-driven algorithm for preemptive, periodic
jobs. Optimal in this context means that no other
static algorithm can schedule a task set that the
rate monotonic algorithm cannot also schedule.

The following five assumptions are prerequi-
sites to applying the rate monotonic algorithm:

1.The requests for all tasks with deadlines are
periodic.

2.The processing of a single task must finish
before the processing of the next task in the
same data stream.

3. All tasks are independent. The requests of one

t video stream a rate of 25
frames per second. The

priority assigned to the audio stream is then high-
er than the priority assigned to the video stream.
Messages arriving from the audio stream will
interrupt the processing of the video stream, cre-
ating context switches.

If more than one stream is processed concur-
rently in a system, more context switches are like-
ly with a scheduler using the rate monotonic
algorithm than one using EDF, as Figure 3 shows.

The rate monotonic algorithm’s processor uti-
lization is upper bounded. The least upper bound
is U = In 2, or about 69 percent.’ Hence, we only
need to check if the processor utilization is less
than or equal to the given upper bound to find
out whether a task set is schedulable. Most exist-
ing systems check this by simply comparing
processor utilization to the value of In 2.

On the other hand, EDF can achieve a proces-
sor utilization of 100 percent because all tasks are
scheduled dynamically according to their dead-
lines. In practice, this 100 percent value is reduced
by the need to provide processing power capabil-
ities for interrupt handling, context switching,
and other basic tasks. Figure 4 shows an example

of how the CPU can be
utilized to 100 percent
with EDF where rate
monotonic scheduling
fails.

The rate monotonic
upper bound of 69 per-
cent represents the
worst-case execution
time; calculations using
that figure lead to
underutilized proces-
sors. The problem of
underutilizing the pro-
cessor is aggravated by
the fact that in most
cases, the average task
execution time is con-

Deadlines dA dB dC
d l d2 I d3 d4 d5 d6 d7 I

Rate monotonic I I
I I

B C

Deadline violations

siderably lower than the worst case. Therefore, to
use the processor as efficiently as possible, sched-
uling algorithms should be able to handle tran-
sient processor overload.

On average, the rate monotonic algorithm
ensures that all deadlines will be met, even if the
bottleneck utilization is well above 80 percent.
With one deadline postponement, the deadlines
are met on average when the utilization exceeds
90 percent. The rate monotonic algorithm
achieved a utilization bound of 88 percent for the
Nowy's Inertial Navigation System.'j

Applying the rate-monotonic algorithm
One extension to this algorithm divides a task

into a mandatory and an optional part. Processing
of the mandatory part delivers an acceptable
result, while the optional part refines the result.
The mandatory part is scheduled according to the
rate monotonic algorithm, though different poli-
cies are suggested for scheduling of the optional
part.'-l

Systems with aperiodic tasks next to periodic
ones must be able to schedule both types of tasks.
I f the aperiodic request is a continuous stream,
such as video images in a slide show, we can trans-
form it into a periodic stream by substituting n
items of minimal duration for each timed data
item. The number of streams increases, but since
the life span decreases, the result remains
unchanged. The stream is now periodic because
every item has the same life span.'j

If the stream is not continuous, we can apply a
sporadic server to respond to aperiodic requests.
The server has a budget of computation time
reserved for aperiodic tasks that is refreshed t units

of time after it has been exhausted or earlier. The
server may preempt the execution of periodic
tasks only if the computation budget is not
exhausted. Afterwards it can only continue to exe-
cute aperiodic tasks with a background priority.
After the budget is refreshed, execution resumes
at the server's assigned priority. The sporadic serv-
er is especially suitable for events that occur rarely
but must be handled quickly, such as the move-
ments of a telepointer in a computer-supported
cooperative work (CSCW) application."

The rate monotonic algorithm is particularly
suitable for continuous-media data because it
makes optimal use of their periodicity. Since it is
a static algorithm, it rarely rearranges priorities
and hence-in contrast to EDF-accrues no sched-
uling overhead to determine the next task.
Problems emerge with data streams that have a
very diverse processing time per message as
MPEG-2 specifies, for example, a compressed
video stream where one of five pictures is a full
picture and all others are updates to that picture.
The simplest solution is to schedule tasks accord-
ing to their maximum data rate, which would
decrease processor utilization. In any case, during
the CPU's idle time all kinds of noncritical tasks
can be processed.

Least-laxity-first algorithm
Besides EDF and rate monotonic, other sched-

uling algorithms have been evaluated for the pro-
cessing of continuous-media data. The most
prominent is least laxity first, which schedules the
task with the shortest remaining laxity-the time
between the current time and the deadline, minus
the remaining processing time-first.I6 LLF is an

Figure 4. EDF can
schedule tasks
successfully a t processor
utilization rates up to
loopercent, while rate
monotonic's utilization
has a worst-case upper
bound of 69percent
before failure.

technique is

as suitable as

EDF and rate

monotonic. -

optimal, dynamic algorithm for
exclusive resources. It is also optimal
for multiple resources if the ready
times of the real-time tasks are the
same.

Since laxity is a function of dead-
line, processing time, and current
time, the processing time cannot be
specified in advance. The calculation
of laxity also assumes the worst case
and is inexact. Moreover, the laxity
of waiting processes changes over
time. During runtime of one task,
another task may get a lower laxity,

causing it to preempt the running task. Conse-
quently, tasks can preempt each other several
times without a new task being dispatched, which
can cause numerous context switches. At each
scheduling point (either when a process becomes
ready to run or at the end of a time slice) the lax-
ity of each task must be determined anew, which
creates a greater overhead than EDF. Since we usu-
ally have only a single resource to schedule, LLF
has no advantage over EDF.

In future multimedia systems with multiple
processors, LLF might look better. Most multi-
media systems with preemptable tasks employ a
variation of the rate monotonic algorithm. So far,
no other scheduling technique has proven as suit-
able for multimedia data handling as the EDF and
rate monotonic approaches.

Resource management
Multimedia systems with integrated audio and

video processing often operate at the limit of their
capacity, even with data compression and use of
new technologies. Current computers do not allow
any kind of manipulation and communication of
these data according to their deadlines without
reservations and real-time process management.

A multimedia system must enforce timing
guarantees for continuous-media processing at
every hardware and software component on the
data path. Timing requirements depend on the
type of media and the nature of the supported
applications. For instance, a video image should
not be presented late because the communication
system was busy with a traditional discrete-data
transaction. In any realistic scenario, we
encounter several multimedia applications that
access shared resources concurrently. Hence, even
systems with high-bandwidth networks and huge
processing capabilities require real-time mecha-
nisms to guarantee data delivery.

In distributed multimedia systems, “resource
management” covers several computers as well as
communication networks. It allocates all resources
involved in data transfer between sources and
sinks. For instance, today a CD-ROM XA device
has to be allocated exclusively: Transferring video
data from the device takes up to 20 percent of the
capacity of each CPU on the data path, up to 40
percent of the graphic processor’s capacity, and a
certain amount of network bandwidth. At the
connection establishment phase, resource man-
agement ensures that the new connection does
not violate performance guarantees already pro-
vided to existing connections.

Resources
We can extend the notion of resource man-

agement to cover the CPU (process management),
memory management, the file system (file man-
agement), and device management. To simplify, I
generalized the issue of reservation for all
resources into a generic notion of resources.

A resource is a system entity that tasks require
for manipulating data. Each resource has a set of
distinguishing characteristics classified using the
following scheme:l

I Active orpassive. An active resource, such as the
CPU or a network adapter for protocol pro-
cessing, provides a service. A passive resource,
such as the main memory, communication
bandwidth, or a file system, denotes some sys-
tem capability required by active resources.

I Exclusive or shared. Active resources are often
exclusive; passive resources can usually be
shared among processes.

I Single or multiple. A resource type that exists
only once in the system is single, otherwise it
is multiple. In a transputer-based multiproces-
sor system, an individual CPU is a multiple
resource.

For example, an IS0 9660 file system stored on an
optical disc in CD-ROM XA format is a passive,
shared, single resource, while process manage-
ment belongs to the categories of active, shared,
and (most often) single resources.

Each resource has a capacity measured by a
task‘s ability to perform in a given time span using
the resource. In this context, capacity refers to
CPU capacity, frequency range, or the amount of
storage, for example. Real-time scheduling only

considers the temporal division of resource capac-
ity among real-time processes.

QOS requirements
Each component of a multimedia system must

fulfill the requirements of multimedia applica-
tions and data streams. Resource management
maps these requirements onto system capacity.
We can classify the transmission and processing
requirements of local and distributed multimedia
applications by four main characteristics:

1. throughput,

2. delay (local or global),

3 . jitter, and

4. reliability.

The throughput is determined by the data rate a
connection needs to satisfy the application
requirements, as well as the size of the data units.
The local delay is the maximum time a resource
takes to complete a certain task. The end-to-end,
or global, delay is the total delay for a data unit
traveling from a source to its destination. The jit-
ter, or delay jitter, determines the maximum
allowed variance in the arrival of data at the
destination.

The reliability requirement defines error-
detection and -correction mechanisms used for
the transmission and processing of multimedia
tasks. Errors can be ignored, indicated, or correct-
ed. For instance, error correction through retrans-
mission is rarely appropriate for time-critical data
because the retransmitted data will usually arrive
late. In such a case, a forward error-correction
mechanism would be more useful. Reliability also
refers to CPU errors caused by delays in process-
ing a task which violate the demanded deadlines.
In accordance with communication systems ter-
minology, these requirements are also known as
quality-of-service (QOS) parameters.

Negotiating QOS
A typical realization of resource allocation and

management is based on the interaction between
clients and resource managers. The client selects
the resource and requests a resource allocation by
indicating its requirements through a QOS speci-
fication. This is equivalent to a workload request.
First the resource manager checks its own resource
utilization and decides if the reservation request

can be served. The resource manager stores all
existing reservations to guarantee that each
request receives its share of the resource capacity.
This component also negotiates the reservation
request with other resource managers if necessary.

During the connection establishment phase,
the QOS parameters are usually
negotiated between the requester
(client application) and the ad-
dressed resource manager. In the
simplest case, negotiation entails the
resource manager checking whether
the QOS parameters the application
specified can be guaranteed. A more
elaborate method is to optimize sin-
gle parameters. In this case the appli-
cation sets the values for two
parameters, for example, throughput
and reliability; the resource manag-
er then calculates the best achievable
value for the third parameter, delay.
Negotiating the parameters for end-
to-end connections over one or
more computer networks requires
resource reservation protocols like
ST-I1 or RSVP. In such protocols, the
resource managers of the single com-
ponents within the distributed sys-
tem allocate the necessary resources.

A resource manager and the indi-

the temporal
division of

resource

capacity

among

real-time

processes. -
vidual schedulers provide services for
the four phases of the allocation and management
process:

1. Scliedulability test. The resource manager
checks whether, given the QOS parameters-
throughput and reliability, for example-there
is enough resource capacity to handle the
additional request.

2. Quality-of-service calculation. The resource man-
ager calculates the best possible performance-
in this example, the lowest delay-the
resource can guarantee for the new request.

3 . Resource reservation. The resource manager allo-
cates the capacity required to meet the QOS
guarantees for each request.

4. Resource scheduling. Incoming messages are
scheduled according to the given QOS guar-
antees. In process management, for instance,
the scheduler allocates resources at the
moment the data arrives for processing.

During the last phase, a scheduling algorithm is
defined for each resource. The schedulability test,
QOS calculation, and resource reservation depend
on the algorithm used by the scheduler: Before
making a reservation, you must know how much
capacity you are allowed to distribute, as deter-
mined by the algorithm chosen (100 percent for
EDF, 69 percent for rate monotonic).

provides

constant,

timely data

ret r i eva I. -

Allocation scheme
Resources can be reserved in

either a pessimistic or optimistic
way. The pessimistic, or guaranteed,
approach avoids resource conflicts
by making reservations for the worst
case; that is, reserving resource band-
width for the longest processing
time and the highest rate a task
might ever need. This can lead to
underutilization of resources. In a
multimedia system, however, dis-
crete media tasks can use the
remaining processor time-the time
reserved for traffic but not used-
and avoid wasting resource capacity.
The pessimistic method results in a
guaranteed QOS.

The optimistic, or statistical, approach reserves
resources according to an average workload only,
which could overbook resources. QOS parameters
are met as far as possible. Resources are highly uti-
lized, though an overload situation may result in
failure. The optimistic approach, an extension of
the pessimistic approach, requires a monitor to
detect and solve resource conflicts. The monitor
may, for instance, preempt processes according to
their importance.

File management
The file system provides access and control

functions for file storage and retrieval. From the
users’ viewpoints, the file system allows them to
organize and structure files, changing how the files
are represented externally. The internals are more
important in our context: how the system repre-
sents information in files and how it accesses those
files in secondary storage. In traditional file sys-
tems, the information types stored in files are
sources, objects, program libraries and executables,
numeric data, text, payroll records, and so on. In
multimedia systems, stored information also
includes video and audio, with real-time read and
write demands that create additional requirements
in the design and implementation of file systems.

Compared to the exponentially increased per-
formance of processors and networks over the past
decade, storage devices have become only mar-
ginally faster. The effect of this increasing dispar-
ity in speed is the search for new storage structures
and storage and retrieval mechanisms. Applied to
file systems, continuous-media data differs from
discrete data in the following ways:

I Real-time characteristics. The retrieval, compu-
tation, and presentation of continuous media
is time-dependent: The data must be present-
ed (read) before a set deadline with minimal jit-
ter. Thus, algorithms for the storage and
retrieval of such data must consider time con-
straints and include additional buffers to
smooth the data stream.

I File size. Compared to text and graphics, video
and audio have very large storage space
requirements. Since the file system has to store
information ranging from small, unstructured
units like text files to large, highly structured
units like video and associated audio, it has to
organize the data on disk in a way that effi-
ciently uses the limited storage.

I Multiple data streams. A multimedia system has
to support various media at once. It not only
has to ensure that all of them get a sufficient
share of the resources, it must also consider
tight relations between streams arriving from
different sources, such as the synchronized
audio and video for a movie.

There are two basic approaches to supporting
continuous media in file systems. In the first
approach, the organization of files on disk
remains as it is, with the necessary real-time sup-
port provided through special disk-scheduling
algorithms and enough buffer capacity to avoid
jitter. The second approach optimizes the organi-
zation of audio and video files, especially on dis-
tributed hierarchical storage like disk arrays. The
basic idea is to improve the throughput and
capacity by storing the data of each audio and
video file on several volumes. Disk 1/0 bandwidth
is maximized by striping, while seek times are
minimized by grouping and sorting.”

Storage methods
In conventional file systems, the main goal of

file organization is to use storage capacity effi-
ciently (to reduce internal and external fragmen-

tation) and to allow arbitrary deletion and exten-
sion of files. In multimedia systems, however, the
main goal is to provide constant, timely retrieval
of data. Internal fragmentation occurs when
blocks of data are not entirely filled. On average
the last block of a file is only half utilized, so large
blocks lead to a larger waste of storage. External
fragmentation mainly occurs with contiguous stor-
age. After deletion of a file, the resulting gap can
only be filled by a file of the same size or smaller,
leaving small, unused fractions between files. This
leads to a dilemma: Either storage space for con-
tinuous media is wasted by internal fragmentation
or huge amounts of data must be copied frequent-
ly to avoid external fragmentation.

Real-time storage. Providing an adequate
buffer for each data stream and employing disk-
scheduling algorithms optimized for real-time
storage and retrieval of data offers flexibility at the
cost of scattering the data blocks of single files. It
also avoids external fragmentation and provides
access to the same data by several streams via ref-
erences. Even when using only one stream, this
might be advantageous; for instance, the system
could access the same block twice to play a repeat-
ing phrase in a sonata. However, even with opti-
mized disk scheduling the data retrieval phase still
requires large buffers to smooth jitter because of
the large seek operations during playback.
Therefore, this method can produce long initial
delays at the retrieval of continuous media.

Another problem is the restricted transfer rate.
Upcoming disk arrays, which might have 100 or
more parallel heads, will achieve projected seek
and latency times of less than 10 milliseconds,
with a block size of 4 Kbytes at a transfer rate of
0.32 Gbits per second. However, this is still not
enough for simultaneous retrieval of four or more
production-level MPEG-2 videos compressed in
HDTV quality, which may require transfer rates of
up to 100 Mbps.l*l9

Continuous storage. Approaches that use spe-
cific disk layout take the specialized nature of con-
tinuous-media data into account to minimize the
cost of retrieving and storing streams. The much
greater size of continuous-media files and the fact
that they will usually be retrieved sequentially
because of the nature of operations performed on
them (such as play, pause, and fast forward) call
for optimization of the disk layout.

Lougher and Shepherd’sLo application-related
experience led them to two conclusions: (1)

Continuous-media streams predominantly belong
to the write-once-read-many category (WORM;
see “Disk-scheduling algorithms,” below), and (2)
streams recorded at the same time are likely to be
played back at the same time (for example, the
audio and video of a movie). Hence, we should
store continuous-media data in large data blocks
contiguously on disk, Files likely to be retrieved
together are grouped together on the disk, thus
minimizing interference due to concurrent access
of these files. With such a disk layout, the buffer
requirements and seek times decrease.

The disadvantages of the contiguous approach
are external fragmentation and copying overhead
during insertion and deletion. To avoid these
problems without scattering blocks in a random
manner over the disk, a multimedia file system can
provide constrained block allocation of the con-
tinuous media.21 To serve the continuity require-
ments during allocation, the file system should
introduce read-ahead and buffering
of a determined number of blocks.22

Interleaved placement. Some
systems using scattered storage
employ a special disk-space alloca-
tion mechanism for fast and efficient
access. Abbott performed the pioneer
work in this field.z1 He was especially
concerned about the size of single infor
blocks, their positions on disk, and
the placement of different streams. Storage and
With interleaved placement, all rith
blocks of each stream are in close recording
physical proximity on disk. Two pos-
sibilities for interleaved placement methods.
are contiguous and scattered. With
interleaved data streams, synchro-
nization is much easier to handle.
On the other hand, inserting and deleting single
parts of data streams become more complicated.

-
Disk-scheduling algorithms

In general, disks can be characterized in two dif-
ferent ways. The first is how they store informa-
tion: There are rewritable disks, WORM disks, and
read-only disks like CD-ROMs. The second dis-
tinctive feature is the recording method, either
magnetic or optical. The main differences between
the methods are the access time and the track
capacity: The seek time on magnetic disks is typi-
cally about 10 ms, whereas on optical disks 200 ms
is still a common lower bound. Magnetic disks
have a constant rotation speed, or constant angu-

v,

J
rcl

s.
\o
\o wl

must firid a

balance

between time

constraints

and efficiency. -

lar velocity (CAV). Thus, while the
density varies, the storage capacity is
the same on inner and outer tracks.
Optical disks have varying rotation
speed, or constant linear velocity
(CLV), so the storage density is the
same on the whole disk while the
capacity varies. The different record-
ing methods mean that magnetic
and optical disks make use of differ-
ent algorithms. File systems on CD-
ROMs are defined by I S 0 9660, with
very few variations allowed. Hence, I
will focus on algorithms applicable
to magnetic storage devices.

The overall goal of disk schedul-
ing in multimedia systems is to meet
the deadlines of all time-critical

tasks. Closely related is the goal of keeping the
necessary buffer space requirements low. As many
streams as possible should be served concurrent-
ly, but aperiodic requests should also be schedu-
lable without delaying service for a large amount
of time. The scheduling algorithm has to find a
balance between time constraints and efficiency.

The EDF strategy. Let us first look at the EDF
scheduling strategy, described above for CPU
scheduling but used in file systems as well. In the
context of file systems, EDF would read the block
of the stream with the nearest deadline first. The
employment of strict EDF results in poor through-
put and an excessive seek time. Further, since EDF
is most often applied as a preemptive scheduling
scheme, the costs for preempting one task and
scheduling another are high. The overhead caused
by this is on the same order of magnitude as at
least one disk seek. Hence, a file system must adapt
EDF or combine it with other file system strategies.

The SCAN-EDF strategy. This combines the
seek optimization of the well-known traditional
disk-scheduling method SCAN and the real-time
guarantees of the EDF mechanisms in the follow-
ing way:2i As in EDF, the request with the earliest
deadline is always served first. Among requests
with the same deadline, the one that is first
according to the scan direction is served first. The
SCAN algorithm repeats this principle until no
request with this deadline is left.

Since the optimization only applies for
requests with the same deadline, its efficiency
depends on how often it can be applied-that is,
how many requests have the same or a similar

deadline. The following trick can increase effi-
ciency: Since all requests have release times that
are multiples of the period p, all requests have
deadlines that are multiples of the period p .
Therefore the requests can be grouped together
and served accordingly. Requests with different
data-rate requirements can supplement SCAN-
EDF with a periodic fill policy to let all requests
have the same deadline.

SCAN-EDF can easily be implemented by
slightly modifying EDF. If D, is the deadline of task
i and N , is the track position, then the deadline
can be modified to be D, + f (N ,) . The function f()
converts the track number of i into a small per-
turbation that defers the deadline. Compared to
pure EDF and different variations of SCAN, SCAN-
EDF with deferred deadlines performs well in
multimedia environments.24

Group sweeping strategy. This variation of
SCAN, serves requests in round-robin cycles.2s To
reduce disk arm movements, GSS divides the set
of n streams into g groups, served in fixed order.
Individual streams within a group are served
according to SCAN; therefore the time or order of
individual streams within a group is not fixed. In
one cycle a specific stream may be the first served,
but in another cycle it may be the last in the same
group. A smoothing buffer, sized according to the
cycle time and data rate of the stream, assures
continuity. Since the data must be buffered in
GSS, the playout can start at the end of the group
in which the first retrieval takes place. Whereas
SCAN requires buffers for all streams, GSS can
reuse the buffer for each group. GSS is a trade-off
between optimizations of buffer space and arm
movement.

To provide the requested guarantees for con-
tinuous-media data, we can introduce a joint
deadline mechanism: We assign to each group of
streams one deadline, the joint deadline. This dead-
line is the earliest deadline of all streams in the
group. Streams are grouped in such a way that all
of them have similar deadlines.

Mixed strategy. Abbott introduced a mixed
strategy based on the shortest seek strategy (also
called greedy strategy) and the balanced strategy.''
Every time data are retrieved from disk, they are
transferred into buffer memory allocated for the
data stream. From there the application process
retrieves the data. The balanced strategy attempts
to maximize transfer efficiency by minimizing
seek time and latency and to serve process require-

ments with a limited amount of buffer space.
While shortest seek serves the process whose

data block is closest to the disk head first, thus sav-
ing seek time, the balanced strategy serves the
process with the least amount of buffered data first.
The crucial part of the mixed algorithm is deciding
which of the two strategies to apply. For shortest
seek, two criteria must be fulfilled: The number of
buffers for all processes should be balanced (that is,
all processes should have nearly the same number
of buffered data), and the overall required band-
width should be sufficient for the number of active
processes so that none of them will try to immedi-
ately read data out of an empty buffer.

Abbot introduced the term urgency in an
attempt to meet both riter ria.?^ This number mea-
sures both the relative balance of read processes
and the number of them. If the urgency is large,
the balanced strategy is best; if it is small, it is safe
to apply the shortest seek algorithm.2h

Device management
Device management and access allows the

operating system to integrate all hardware com-
ponents. The physical device is represented by an
abstract device driver, which hides its physical
characteristics. In a conventional system such
devices include a graphics adapter card, hard disk,
keyboard, and mouse. Multimedia systems add
devices like cameras, microphones, speakers, and
dedicated audio and video storage devices. Yet in
most existing multimedia systems, such devices
are seldom integrated by device management and
the respective drivers.

Addressing of a camera can be handled much
like addressing of a keyboard. Existing operating
system extensions for multimedia usually provide
one common system-wide interface for the con-
trol and management of data streams and devices.
In Windows and OS/2, this interface is known as
the Media Control Interface (MCI). The multi-
media extensions of Windows, for example, pro-
vide the following classes of function calls:

I System cominands are served by a central
instance, not forwarded to the single device
driver (MCI driver). An example of such a com-
mand is the query concerning all devices con-
nected to the system, “Sysinfo.”

I Corripirlsory con~mands include the query for
specific characteristics (“capability info”) and
the opening of a device (“open”). Each device
driver must be able to process them.

I Basic cornmarids refer to characteristics that con-
stitute all devices. To process such a command,
a device driver must consider all variants and
parameters of the command. A data transmis-
sion, for example, is typically started by the
basic command “play.”

I Extended conzrnanrls may refer to both device
types and special single devices. The “seek”
command for the positioning on an audio CD
is an example.

Synchronization
Syizchroizization denotes the temporal relation-

ship between different media data. A typical
example is lip synchronization, which requires a
tight temporal relationship between audio and
video data. Most often this type of synchroniza-
tion is guaranteed and enforced by having audio
and the related video data stored and transmitted
in an interleaved way defined at the MPEG system
layer. Otherwise, time-stamping of the media
packets (LDUs) and appropriate buffering at the
presentation system allows the oper-
ating system to present the related
data units of the different streams
“in synch“ to the user.

Memory management
The memory manager assigns

physical resource memory to a single
process. Virtual memory is mapped
onto available actual memory. The
memory manager swaps less fre-
quently used data between main
memory and external storage using
paging. Pages are transferred back
into main memory when a process
requires data on them. Note that
continuous-media data must not be

k hi

much like

addressing of

a keyboard. -
temporarily paged out of main memory. If a page
of virtual memory containing code or data
required by a real-time process is not in real mem-
ory when the process accesses it, a page fault
occurs, meaning the page must be read from disk.
Page faults seriously affect the real-time perfor-
mance, so they must be avoided. One approach is
to lock code and/or data into real memory.
However, take care: Real memory is a very scarce
resource to the system. Committing real memory
by pinning (locking) will decrease overall system
performance. For example, the typical AIX kernel
will not allow more than about 70 percent of real
memory to be committed to pinned pages.

v)

P

cn

The transmission and processing of continuous
data streams by several components require very
efficient data transfer restricted by time con-
straints. Memory allocation and release functions
provide well-defined access to shared memory
areas. Most cases require no real data processing,
only a data transfer. For example, say a digital
camera is the source and the presentation process
is the sink. The essential task of the other compo-
nents is the exchange of continuous-media data
with relatively high data rates in real time.
Processing involves computing, adding, inter-
preting, and stripping headers. The actual imple-

NRTE

I Application(s) I

Stream control interface(s)

Stream management system(s) Control

Stream handler

Source

Y
Lu
Lu

Stream handler

Sink Continuous-media data

Figure 5. Within one
multimedia computer,
real-time and non-real-
time environments use
specialized architectures
to meet direring data
requirements.

System architectures
The employment of continuous media in

multimedia systems leads to new system architec-
tures. A typical multimedia application does not
require the application itself to process audio and
video. Data is obtained from a source, such as a
microphone, camera, disk, or network, and for-
warded to a sink, such as a speaker, display, or net-
work. The requirements of continuous-media data
are satisfied best if the data takes the shortest pos-
sible path through the system by copying data
directly from adapter to adapter. The program
then merely sets the correct switches for the
dataflow by connecting sources to sinks. Hence,
the application itself never really touches the data,
unlike in traditional processing.

A problem with direct copying is losing control
over QOS parameters and device-specific headers
and trailers. In multimedia systems, such an
adapter-to-adapter connection is defined by the
capabilities of the two adapters involved and the
bus performance. An MPEG-2 program stream
contains several layers, each with headers and
trailers, whereas a communication protocol on
the network adapter contains more information
about the actual payload. Hence the multimedia
application opens devices, establishes a connec-
tion between them, starts the dataflow, and
returns to other duties.

As previously stated, the overriding need of
multimedia applications is to meet temporal
requirements at presentation time. Therefore,
multimedia data is handled in a real-time envi-
ronment: Its processing is scheduled according to
inherent timing requirements of multimedia data.
On a multimedia computer, the real-time envi-
ronment will usually coexist with a non-real-time
environment (NRTE), which deals with all data
without timing requirements (Figure 5). Multi-
media I/O devices in general can be accessed from
both environments. A video frame, for example,
is passed from the RTE to the display. The estab-
lishment of communication connections at the
start of a stream does not need to obey timing
requirements, but the data processing for estab-
lished connections does.

All control functions are performed in the
NRTE. The application usually only calls these
control functions and does not actively handle
continuous-media data. Therefore the multimedia
application itself typically runs in the NRTE,
shielded from the RTE.

In some scenarios, users may want applications
to process continuous-media data in an applica-

mentation can be realized either with external
devices and dedicated hardware in the computer
or with software components.

Early prototypes of multimedia systems incor-
porated audio and video based on external data
paths only. Memory management, in that case,
merely controlled an external switch. A first step
towards integration was incorporation of the
external switch function into the computer by
employing dedicated adapter cards that can
switch data streams with varying data rates.
Today, complete integration achieves a fully digi-
tal approach within the computer-a pure soft-
ware solution. Data is transmitted between the
single components in real time. Copy operations
are reduced as far as possible to the exchange of
pointers and the check of access rights, which
requires access to a shared address space. Data can
also be transferred directly between different
adapter cards. The transfer of continuous-media
data takes place in a real-time environment. This
exchange is controlled but not necessarily exe-
cuted by the application.

tion-specific way. In this model, such an applica-
tion comprises a module running as a stream han-
dler in the RTE, while the rest of the applications
run in the NRTE using the available stream control
interfaces. (Stream handlers are all entities in the
RTE in charge of multimedia data. Typical stream
handlers are filter and mixing functions, but parts
of the communication subsystem can be treated in
the same way.) System and application programs
such as communication protocol processors use
this programming in the RTE. While applications
like authoring tools and media presentation pro-
grams are relieved from the burden of program-
ming in the RTE, they interface with and control
the RTE services. An application determines pro-
cessing paths and controls devices and paths to
meet its data processing needs by defining the
sinks, sources, and quality of service requested.

To reduce data copying, the RTE employs
buffer management functions to implement data
transfer. This buffer management is located
between the stream handlers. Each stream handler
has endpoints through which data units flow. The
stream handler consumes data units from one or
more input endpoints and generates data units
through one or more output endpoints.

Applications access stream handlers by estab-
lishing sessions with them. Depending on the
required QOS of a session, an underlying resource
management subsystem multiplexes the capacity
of the underlying physical resources among the
sessions. NRTE control operations manage the RTE
dataflow through the stream handlers. These func-
tions make up the stream management system in
the multimedia architecture. Some operations are
provided by all stream handlers, such as operations
to establish sessions and to connect their end-
points, and some operations are specific to an indi-
vidual stream handler (they usually determine the
content of a multimedia stream and apply to par-
ticular 1 / 0 devices).

The stream management subsystem specifies
stream synchronization on a connection basis,
expressed using the notions of clock or logical
time systems. It determines points in time at
which the processing of data units shall start.
Regular streams can use the stream rates or
sequence numbers to relate data units to syn-
chronization points. Time stamps are a more ver-
satile means for synchronization, as they can also
be used for nonperiodic traffic. Synchronization
is often implemented by delaying the execution
of a thread or by delaying the receive operation on
a buffer exchanged between stream handlers.

Conclusion
Scheduling concerns are paramount in multi-

media systems. The need to deliver continuous
media on time while accommodating discrete data
informs every aspect of a multimedia operating sys-
tem. It affects how the system manages processes,
resources, files, and memory. The concepts em-
ployed by current multimedia operating systems
were initially developed for real-time systems and
were adapted to the requirements of multimedia
data. Today's operating systems incorporate these
functions either as device drivers or as extensions
based on the existing operating system scheduler
and file systems. The next step will bring an inte-
gration of real-time processing and non-real-time
processing in the native system ke~nel.~' ,?~ MM

Acknowledgments
The author gratefully acknowledges the valu-

able advice and the work performed by Andreas
Mauthe in this context. Klara Nahrstedt, Lars
Wolf, Ian Marsh, and the anonymous reviewers
suggested many improvements to all sections
which were incorporated into this final version.

References
1. T. Burkow, "Operating System Support for

Distributed Multimedia Applications: A Survey of
Current Research," Memoranda lnformatica 94-48,
Univ. of Cambridge Computer Laboratory and Univ.
of Twente Faculty of Computer Science, 1994.

2. R. Steinmetz, Multimedia Technology: fundamentals
and lntroduction (in German), Springer-Verlag,
Berlin, 1993.

3. R. Steinmetz and K. Nahrstedt, Multimedia:
Applications, Computing, and Communications,
Prentice-Hall, to be published in May 1995.

4. C.M. Krishna and Y.H. Lee, "Real-Time Systems,"
Computer, Vol. 24, No. 5, May 1991, pp. 10-1 1.

5. R. Steinmetz, "Human Perception of Jitter and Media
Skew," to be published in I € € € / . Selected Areas in
Comm., Vol. 14, No. 1, Jan. 1996.

6. A.K. Mok, fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment, doctoral
dissertation, Dept. of Electrical Eng. and Computer
Science, MIT, 1993.

7. A.M. Van Tilborg and G.M. Koob, eds., Foundations
of Real-Time Computing: Scheduling and Resource
Management, Kluwer Academic Publisher, Norwell,
Mass., 1991.

Performance of Multimedia Traffic over the Token
Ring," Tech. Report No. 439201, IBM-ENC,
Heidelberg, 1992.

8. R. Nagarajan and C. Vogt, "Guaranteed

9. C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environment,” 1. ACM, Vol. 20, No. 1, Jan. 1973, pp.
46-61.

10. S.-C. Cheng,].A. Stankovic, and K. Ramamritham,
“Scheduling Algorithms for Hard Real-Time
Systems-A Brief Survey,” Hard Real-Time Systems, J.
A. Stankovic and K. Ramamritham, eds., IEEE CS
Press, Los Alamitos, Calif., 1988, pp. 150-1 78.

Imprecise Computations,” Computer, Vol. 24, No. 5,
May 1991, pp. 58-68.

Monotonic Analysis for Real-Time Systems,” in
Foundations of Real- Time Computing: Scheduling and
Resource Management, A. van Tilborg and G.M.
Koob, eds., Kluwer Academic Publisher, Norwell,
Mass., 1991, pp. 129-1 56.

Scheduling for Hard Real-Time Systems,“ 1. Real-Time
Systems, Vol. 1, 1989, pp. 27-60.

14. J.W.S. Liu, K.-J. Lin, and S. Naturajan, “Scheduling
Real-Time, Periodic Jobs Using imprecise Results,”
Proc. /E€€ Real-Time Systems Symp., IEEE Press,
Piscataway, N.J., 1987, pp. 252-260.

15. R.C. Herrtwich, “Time Capsules: An Abstraction for
Access to Continuous-Media Data,” Proc. / € E € Real-
Time Systems Symp., IEEE Press, Piscataway, N.J.,

16. D.W. Craig and C.M. Woodside, ”The Rejection Rate
for Tasks with Random Arrivals, Deadlines, and
Preemptive Scheduling,” / € E € Trans. on Software
Eng., Vol. 16, No. 10, Oct. 1990, pp. 1,198-1,208.

17. P.M. Chen et al., “RAID: High-Performance, Reliable,
Secondary Storage,” ACM Computing Surveys, Vol.
26, No. 2, June 1994, pp. 145-1 86.

Computing: Principles and Techniques,”
Springer/ACM /. Multimedia Systems, Vol. 1, No. 4,
Feb. 1994, pp. 166-1 72.

Computing: Standards and Systems,” SpringerlACM
/. Multimedia Systems, Vol. 1, No. 5, Mar. 1994, pp.

11 .J.W.S. Liu et al., ”Algorithms for Scheduling

12.L. Sha, M.H. Klein, and J.B. Goodenough, “Rate

13. B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task

1990, pp. 11 -20.

18. R. Steinmetz, “Data Compression in Multimedia

19. R. Steinmetz, ”Data Compression in Multimedia

187-204.
20. P. Lougher and D. Shepherd, ”The Design of a

Storage Service for Continuous Media,” The
Computer]., Vol. 36, No. 1, Feb. 1993, pp. 32-42.

21. J. Gemmell and S . Christodoulakis, “Principles of
Delay Sensitive Multimedia Data Storage and
Retrieval,” ACM Trans. on lnformation Systems, Vol.
10, No. 1, Jan. 1992, pp. 51-90,

22.H.M. Vin and P.V. Rangan, “Techniques for Efficient
Storage of Digital Video and Audio,” Computer
Comm., Vol. 16, No. 3, Mar. 1993, pp. 168-1 76.

23.C. Abbott, “Efficient Editing of Digital Sound on
Disk,” /. Audio Eng. Soc., Vol. 32, No. 6, June 1984,
pp. 394-402.

24.A.L.N. Reddy and J. Wyllie, “Disk Scheduling in a
Multimedia 1/0 System,” Proc. 7st ACM l n t l Conf. on
Multimedia, ACM Press, New York, 1993, pp. 225-
233.

25.M.3. Chen, D.D. Kandlur, and P.S. Yu,
“Optimization of the Group Sweeping Scheduling
(GSS) with Heterogeneous Multimedia Streams,”
Proc. 1 s t ACM lnt7 Conf. on Multimedia, ACM Press,
New York, 1993, pp. 235-241.

Approaches for Continuous Media Disk Scheduling,”
to appear in Computer Comm., Vol. 18, No. 4, Apr.
1995.

Systems,” in Distributed Systems, S.J. Mullender, ed.,
Addison-Wesley, Reading, Mass., 1993, pp. 385-
409.

Distributed Multimedia,” Usenix Summer Conf. 7994,
Usenix Assoc., pp. 209-220.

26. R. Steinmetz, “A Multimedia File Systems Survey:

27. S.J.Mullender, “Kernel Support for Distributed

28. S.J. Mullender, ”Operating System Support for

Ralf Steinmetz manages the
multimedia department a t the
IBM European Networking Center
in Heidelberg. H e i s also a lecturer
in distributed multimedia systems
at the University of Frankfurt. H e

studied electrical engineering with
a focus on communications at the University of Salford,
UK and Darmstadt, Germany, and received an MS (Dip1.-
Ing.) and PhD (Dr.-Ing.) from t h e University of
Darmstadt in 1982 and 1986, respectively. He i s an asso-
ciate editor-in-chief for [€E€ Mdt iMed in . His current
research interests include multimedia issues in distrib-
uted systems and applications.

Contact the author at IBM European Networking
Center, Vangerowstrasse 18, D-69115, Heidelberg,
Germany, e-mail steinmetzC&net.ibm.com.

