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- 
What makes an 
operating system 
able to handle 
multimedia? This 
survey outlines 
the main features 
an operating 
system must 
possess-from 
resource 
management to 
file system 
issues-with an 
emphasis on 
scheduling, and it 
provides a vision 
of the optimal 
multimedia 
system 
architecture. 

he operating system shields the com- 
puter hardware from all other software. 
It provides a comfortable environment T for program execution and ensures 

effective use of hardware. The operating system 
offers various services related to the essential 
resources, such as the CPU, main memory, storage, 
and all input and output devices. Integrating dis- 
crete and continuous multimedia data demands 
additional services from operating system compo- 
nents, especially real-time processing of continu- 
ous-media data. This survey focuses on basic 
concepts and internal tasks of a multimedia oper- 
ating system because application interfaces are 
often implementation- and product-specific and 
change rapidly, while the fundamental mecha- 
nisms will remain the same for at least the near 
future.’ A broader discussion of the most important 
aspects of multimedia appears elsewhere.*,’ 

This article surveys the unique services multi- 
media systems require of their operating systems. 
First it presents a model of the processing of con- 
tinuous-media data. Then it shows how process 
management must take into account the timing 
requirements imposed by real-time and non-real- 
time multimedia data and apply appropriate 
scheduling methods. To accommodate timing 
requirements, resource management treats single 
components as resources reserved prior to data 
processing. File management services provide 
access to single files and file systems. Memory 

management provides access to data with guar- 
anteed timing delay and efficient data manipula- 
tion functions. Resolving all these issues leads to 
an optimal architecture for multimedia systems. 

Process management 
Process management deals with the main 

processor resource, whose capacity is specified as 
processor capacity. The process manager maps sin- 
gle processes onto the CPU resource according to 
a specified scheduling policy such that all process- 
es meet their requirements. 

The main characteristic of real-time systems is 
the need for correctness. This applies not only to 
errorless computation, but also to the time at 
which the result is presented. Hence, a real-time 
system can fail not only because of massive hard- 
ware or software failures, but also because the sys- 
tem is unable to execute its critical workload in 
time.4 When a system acts deterministically, it 
adheres to previously defined time spans for data 
manipulation; that is, it guarantees a response 
time. Speed and efficiency are not, as often 
assumed, the main characteristics of a real-time 
system. For example, the playback of a video 
sequence in a multimedia system is acceptable 
only when the video is presented neither too fast 
nor too slow. Multimedia systems must also con- 
sider timing and logical dependencies, both inter- 
nal and external, among different, related tasks 
processed at the same time. In the context of 
multimedia data streams, this refers to the pro- 
cessing of synchronized audio and video data 
where the timing relation between the two media 
has to be considered. 

Audio and video data streams consist of single, 
periodically changing values of continuous-media 
data, such as audio samples or video frames. Each 
logical data unit must be presented at a specific 
deadline. Jitter is allowed only before, not during, 
the final presentation. A piece of music, for exam- 
ple, must be played back with constant speed. 
However, recent research at IBM Heidelberg 
showed that users may not perceive a slight jitter 
at media presentation, depending on the medium 
and the application.i 

Today’s operating systems will form the base of 
continuous-media processing on workstations and 
personal computers for years to come. The market 
will be reluctant to accept newly developed multi- 
media operating systems; therefore, existing mul- 
titasking systems must cope with multimedia data 
handling, as the sidebar “Multitasking real-time 
processes” explores. 
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I For many applications, missing a deadline in a ' 
multimedia system is, though regrettable, not a 
severe failure. It may even go unnoticed: I f  an 
uncompressed video frame i s  not prepared on 
time, it can simply be omitted, assuming this 
does not happen for a contiguous sequence of 
frames. (Audio requirements are more stringent 
because the human ear i s  more sensitive to audio 
gaps than the human eye i s  to video jitter.) 

Unix and its variants, Micmsdt's Windows, Apple's System 7, 
and IBM's OS/2, in descending order, are the most widely 
installed operating systems with multimedia capabilities. 
Although some include special priority classes for real-time 
processes, this is not sufficient for multimedia applications. For 
example, one group of researchers tested the SVR4 Unix sched- 
uler, which provides a real-time static priority scheduler in addi- 
tion to a standard Unix time-sharing scheduler.' The test ran 
three applications concurrently: "typing," an interactive appli- 
cation; "video," a continuous-media application; and a batch 
program. Only through trial and error did the SVR4 scheduler 
find a particular combination of priorities and scheduling class 
assignments that worked for a specific application set. This indi- 
cates a need for additional features for scheduling multimedia 
data processing. 

OS/2 offers three possible models for multimedia support. 
First, the device-drivers-as-process-manager approach imple- 
ments operating system extensions for continuous-media pro- 
cessing as physical device drivers (PDDs). In this approach, a 
real-time scheduler and the process manager run as PDDs acti- 
vated by a high-resolution timer. In principle, this is the imple- 
mentation scheme of the OS/2 Multimedia Presentation 
Manager, the multimedia extension to OS/2. 

Second, when an enhanced system scheduler functions as the 
process manager, it can process time-critical tasks together with 
normal applications running in ring 3, the OS/2 user space. Each 
real-time task is assigned to a thread running in the time-critical 
priority class. (In OS/2, a thread is equivalent to a process in the 
overall discussion.) A thread is interrupted if another thread with 
higher priority-there are 32 levels-requires processing. 
Noncritical applications run as threads in the regular class, which 

also has 32 priorities. They are dispatched by the operating sys- 
tem scheduler according to their priority: For fairness, the sched- 
uler itself may rearrange priorities of threads running in this class. 

The main advantage of this second approach is the control 
and coordination of all time-critical threads through a higher 
instance, the system scheduler. This instance, running with a 
higher priority than all other threads, controls and coordinates 
threads according to the adapted scheduling algorithm and the 
respective processing requirements. It can observe the runtime 
behavior of single threads. Another entity, the resource manag- 
er, determines feasible schedules, takes care of quality-of-service 
calculation and resource reservation, and regulates competition 
for the CPU. An internal scheduling strategy and resource man- 
agement allows processing guarantees, but it requires that the 
native scheduler be enhanced and that no other user assigns 
time-critical threads. 

Third, in the metascheduler-as-process-manager approach, 
the normal priority-driven system scheduler schedules all tasks. 
A metascheduler then assigns priorities to real-time tasks. Non- 
time-critical tasks are processed when no time-critical task is 
ready for execution. Many Unix systems use this metascheduler 
approach. However, in an integrated system, the management 
of continuous-data processes will not require a metascheduler; 
it will be part of the system process manager itself. 
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Scheduling 
To fulfill the  timing requirements of continu- 

ous media, t h e  operating system must use real- 
time scheduling techniques. Traditional real-time 
scheduling techniques, used for command and 
control systems in application areas such as fac- 
tory automation or aircraft piloting, demand high 
security and fault tolerance. These demands often 
conflict with real-time scheduling efforts applied 
to continuous media. Multimedia systems outside 
of traditional real-time scenarios have different- 
in fact, more favorable-real-time requirements: 

1 The fault-tolerance requirements of multimedia 
systems are usually less strict than those of real- 
t ime systems with a direct physical impact. A 
short-time failure of a continuous-media sys- 
tem, such as a delay in delivering video-on- 
demand, will not directly lead to the  destruction 

of technical equipment or constitute a threat to 
human life (with the exception of applications 
such as support of remote surgery). 

I A sequence of digital continuous-media data 
results from periodically sampling a sound or 
image signal. Hence, in processing the data 
units of such a data sequence, al l  time-critical 
operations are periodic. Scheduling periodic 



The Advanced Real-Time Technology Operating System 
(ARTS) is a real-time operating system for a distributed environ- 
ment with one real-time process manager, developed by the 
Computer Science Department of Camegie Mellon University. It 
runs a network of Sun 3 workstations, connected with a real-time 
network based on the IEEE 802.5 token ring and Ethernet. To 
solve scheduling problems, the ARTS developers adopted a time- 
driven scheduler (TDS) with a priority inheritance protocol. This 
protocol prevents unbounded priority inversion among com- 
munication tasks. Tasks with hard deadlines are scheduled 
according to the rate-monotonic algorithm, with other schedul- 
ing methods included for experimental reasons.' 

Yet Another Real-Time Operating System was developed at the 
University of North Carolina a t  Chapel Hill as an operating system 
kernel to support teleconferencing applications? YARTOS includes 
an optimal, preemptive algorithm to schedule tasks on a single 
processor and an integrated synchronization scheme to access 
shared resources with the EDF algorithm. Here, a task has two 
notions of deadline, one for the initial acquisition of the processor 

cy, and low jitter. The isochronous class-with the highest pri- 
ority-applies the rate-monotonic algorithm, while the real-time 
and the general-purpose classes use the weighted round-robin 
scheme. The scheduler executes tasks from a ready queue in 
which all isochronous tasks are arranged according to their pri- 
ority. At the arrival of a task, the scheduler determines whether 
the currently running task has to be preempted. Ceneral-pur- 
pose tasks are immediately preempted, real-time tasks are pre- 
empted in the next preemption window, and isochronous tasks 
are preempted in the next preemption window if their priority is 
lower than that of the new task. Whenever the queue is  empty, 
the scheduler alternates between executing the real-time and 
general-purpose classes. 

IBM's European Networking Center in Heidelberg developed 
a metascheduler for the operating systems AIX and OS/2 to sup 
port real-time processing of continuous media.s Rates are 
mapped onto system priorities according to the rate-monotonic 
algorithm. Experience with the OS/2 metascheduler shows the 
limits of this approach. For example, each single process in the 

and one for execution of operations on resources. To avoid prior- 
ity inversion, tasks receive separate deadlines for performing oper- 
ations on shared resources. No shared resource can be accessed 
simultaneously by more than one task, and even a single task only 
occupies a shared resource as long as absolutely necessary. 

The split-level scheduler was developed within the DASH pro- 
ject at the University of California a t  Berkeley to provide better 
support for multimedia  application^.^ It applies a deadline/work- 
ahead scheduling policy under which critical processes have pri- 
ority over all other processes and are scheduled preemptively 
according to the EDF algorithm. Interactive processes have pri- 
ority over work-ahead processes as long as they do not become 
critical. The scheduling policy for work-ahead processes is unspec- 
ified but may be chosen to minimize context switching. Non-real- 
time processes use a scheduling strategy like Unix time-slicing. 

on-demand file service at Digital Equipment Corp. The design of 
the scheduler is based on a combination of weighted round- 
robin and rate-monotonic scheduling that supports three class- 
es of schedulable A general-purpose task is  preemptable 
and runs with a low priority. The real-time class is  suitable for 
tasks that require guaranteed throughput and bounded delay. 
The isochronous class supports real-time periodic tasks that 
require performance guarantees for throughput, bounded laten- 

system can run with a priority initially intended for real-time 
tasks. These processes are not scheduled by the resource man- 
ager and therefore violate the calculated schedule. A malicious 
process can block the whole system simply by running with the 
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tasks is much easier than scheduling sporadic 
ones.6 

I The bandwidth demand of continuous media 
is not always that stringent. Since some com- 
pression algorithms can employ different com- 
pression ratios for different qualities, the 

required bandwidth can be negotiated. If not 
enough bandwidth is available for full quality, 
the application can accept a reduced quality 
over no service at all. The quality may also be 
adjusted dynamically to the available band- 
width, by changing encoding parameters, for 
example. This is known as scalable video. 



In a traditional real-time system, timing 
requirements result from the physical characteris- 
tics of the technical process to be controlled: They 
are provided externally. Some multimedia applica- 
tions must meet external requirements, too. A dis- 
tributed music rehearsal is one example: Music 
played by one musician on an instrument con- 
nected to his workstation has to be made available 
to all other members of the orchestra within a few 
milliseconds, or the underlying knowledge of a 
global unique time is disturbed. 

If human users are involved just in the input or 
output of continuous media, delay bounds are more 
flexible. Consider the playback of a video from a 
remote disk. The delay of a single video frame trans- 
ferred from the disk to the monitor is unimportant. 
Frames must only arrive in a regular fashion. Users 
will notice any difference in delay only as an initial 
delay in response to their “start play” commands. 

Most multimedia operating systems apply one 
of the methods discussed above. Some systems, 
such as those discussed in the sidebar “Scheduling 
experiments,” replace the scheduler with a real- 
time scheduler. These systems can be viewed as 
new operating systems because they are usually 
not compatible with existing systems and appli- 
cations. Other systems apply a metascheduler 
based on an existing process manager. Only these 
systems will have a commercial impact in the 
short and medium terms because they can run 
existing applications. 

Processing requirements 
Continuous-media data processing has to 

occur in precisely predetermined, periodic inter- 
vals. Operations on this data recur over and over 
and must be completed at certain deadlines. The 
real-time process manager determines a schedule 
that allows the resource CPU to make reservations 
and to give processing guarantees. The problem is 
finding a feasible schedule that allows all time- 
critical, continuous-media tasks to meet their 
deadlines. This must be guaranteed for all tasks in 
every period for the whole runtime of the system, 
since a multimedia system processes continuous 
and discrete media data concurrently. 

A system scheduling multimedia tasks must 
consider two conflicting goals. On the one hand, 
noncritical process should not suffer unnecessari- 
ly because of time-critical processes. Multimedia 
applications rely as much on text and graphics as 
on audio and video. On the other hand, a time- 
critical process must never experience priority 
inversion, either between critical and noncritical 

tasks or between time-critical processes with dif- 
ferent priorities. 

Apart from the overhead caused by the schedu- 
lability test and the connection establishment, the 
cost of scheduling every message must be mini- 
mized. Such costs are critical because they occur 
periodically with every message at the start of real- 
time processing. The overhead generated by the 
scheduler and the operating system adds to the 
processing time, so should also be minimized. The 
timing behavior of the operating system and its 
influence on the scheduling and processing of 
time-critical data can lead to time-garbled appli- 
cations. Therefore, operating systems in real-time 
systems cannot be assessed separately from the 
application programs, and vice versa. 

Preemptable versus nonpreemptable task 
scheduling 

The problems involved in attaining real-time 
processing are widely known in computer sci- 
e n ~ e . ~  The goals of traditional scheduling on time- 
sharing computers are optimal throughput, 
optimal resource utilization, and fair queuing. In 
contrast, the main goal of real-time tasks is to pro- 
vide a schedule that allows as many time-critical 
processes as possible to be processed in time to 
meet their deadlines. The scheduling algorithm 
has to map tasks onto resources so that all tasks 
meet their time requirements. 

One reason tasks are usually treated as pre- 
emptable is that for some task sets nonpreempt- 
able scheduling is impossible, where preemptable 
scheduling might be possible. Figure 1 (next page) 
shows such an example. 

Nagarajan and Vogt introduced the first 
schedulability test for nonpreemptable tasks.8 
They proved that a set of m periodic streams with 
periods p,, deadlines d,, and processing times e,, 
where a‘, 5 pr V i E (1, . . ., m), is schedulable if the 
time between the logical arrival time and the 
deadline of a task t, is larger than or equal to the 
sum of the set’s processing time e, and the pro- 
cessing time of any higher priority task that 
requires execution during that time interval plus 
the longest processing time of all lower and high- 
er priority tasks that might be serviced at the 
arrival of the task t,. The schedulability test is an 
extension of Liu and Layland’s.’ Consequently, 
nonpreemptable continuous-media tasks can also 
be scheduled. However, the scheduling of non- 
preemptable tasks is less favorable than for pre- 
emptable tasks because the number of schedulable 
task sets is smaller. 
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unknown timing). A real- 
time system has the per- 
manent task of receiving 
information spontaneous- 
ly or periodically from the 
environment and deliver- 
ing the processed data 
back to the environment 
on time. 

For the purposes of dis- 
cussion, I evaluated all 
scheduling algorithms 
here using the following 
real-time system model, 
whose essential compo- 
nents are resources, tasks, 
and scheduling goals. A 

Figure 1 .  Preemptable 
scheduling methods 
often succeed in making 
a workable schedule 
where nonpreemptable 
methods fail, as this 
diagram of rate- 
monotonic scheduling 
shows. 

To achieve full real-time capabilities, we must 
at least extend the native scheduler of the operat- 
ing system. The operating system should be 
enhanced with a class of fast, nonpreemptable 
threads and the ability to mask interrupts for a 
short period of time. Priorities in this thread class 
should only be assigned to threads already regis- 
tered by the resource manager and monitored by a 
system component with extensive control facili- 
ties. Another possibility is to enhance the perfor- 
mance of the scheduler itself by incorporating 
some mechanisms of real-time scheduling like 
EDF. In any case, the operating system should pro- 
vide a time measurement tool that allows the 
measurement of pure CPU-time and a timer with 
a finer granularity. 

System model 
Because the essential aspect of any multimedia 

operating system is real-time operation, I will first 
establish a common, basic definition of real time 
as it relates to multimedia. The German National 
Institute for Standardization (DIN), similar to the 
American National Standards Institute (ANSI), 
defines a real-time process in a computer system 
as “a process which delivers the results of the pro- 
cessing in a given time-span.” Data processing 
programs must be available during the entire run- 
time of the system, since the data may require 
processing at unexpected times. 

The real-time system must enforce externally 
defined time constraints while considering inter- 
nal dependencies and their related time limits. 
External events occur, depending on the applica- 
tion, either deterministically (at a predetermined 
instant) or stochastically (randomly, with 

* trzsk is a schedulable sys- 
tem entity, corresponding to the notion of a 
thread or a process. A periodic task is one that 
sends consecutive requests at constant intervals. 
A real-time system characterizes a task by its tim- 
ing constraints as well as its resource require- 
ments. The system model I used covers only 
periodic tasks without precedence constraints, in 
which the processing of two tasks is mutually 
independent, which poses no restriction for 
multimedia systems. Today, the playback of syn- 
chronized data, for example, requires only a sin- 
gle process in most of the available multimedia 
systems. On the other hand, a playback of syn- 
chronized streams by two or more processes is, in 
general, not a problem because related streams 
allow for a certain skew. This skew is usually high- 
er than both the accuracy of scheduling-the 
granzrlarity of the system-and the period time p .  

We can define the time constraints of the peri- 
odic task T by 0 i e < d i p ,  where e is the process- 
ing time, tl is the deadline, and p is the period of 
T. The rate r of T equals l l p .  The starting point s 
is the first time where the periodic task requires 
processing (see Figure 2). After that, it requires 
processing at intervals of e. 

At s + ( k  - l)p, the task Tis ready for processing 
in period k .  This processing must be finished at 
s + ( k  - 1)p + (1. For continuous-media tasks, we 
can assume that the deadline of the period ( k  - 1) 
is the ready time of period k .  This is known as con- 
gestion-avoiding deadlines: The deadline for each 
message coincides with the period of the respec- 
tive periodic task. 

Tasks can be preemptable or nonpreemptable. 
A preemptable task can be interrupted by any task 
with a higher priority, later continuing processing 



at the interruption point. A nonpreemptable task, 
in contrast, cannot be interrupted until it volun- 
tarily yields the processor. Any high-priority task 
has to wait until the low-priority nonpreemptable 
task is finished. In such a case, the high-priority 
task suffers priority inversion. For our purposes, 
therefore, all tasks processed on the CPU are con- 
sidered preemptable unless otherwise stated. 

In a real-time system, the scheduling algorithm 
must parcel out an exclusive, limited resource that 
different processes use concurrently such that all 
tasks can be processed without violating any dead- 
lines. This notion can be extended to a model 
with multiple resources of the same type, such as 
a multiprocessor system. It  can also cover differ- 
ent resources such as menlory and bandwidth. A 
scheduling algorithm guc?rcintees a newly arrived 
task when it can find a schedule where in every 
period over the whole runtime, the new task and 
all previously guaranteed tasks can finish process- 
ing by their deadlines.“’ To do this, the algorithm 
must be able to check the schedulability of the 
newly arrived tasks. A scheduling algorithm can 
use the processor utilization-the amount of pro- 
cessing time used by guaranteed tasks over the 
total amount of processing time-as a perfor- 
mance metric.’ 

A Earliest deadline first 
Most attempts to solve real-time scheduling 

problems are just variations on two basic algo- 
rithms for multimedia systems: earliest deadline 
first and rate-monotonic scheduling. The earliest- 
deadline-first (EDF) algorithm is the best-known 
algorithm for real-time processing. At any arrival 
of a new task, EDF immediately computes a new 
order; that is, it preempts the running task and 
schedules the new task according to its deadline. 
Processing of the interrupted task continues later. 
EDF handles not only periodic tasks, but also tasks 
with arbitrary requests, deadlines, and service exe- 
cution times. However, in an arbitrary case of an 
overload situation, EDF cannot guarantee the pro- 
cessing of any task. 

EDF is an optimal, dynamic algorithm. A 
tlyririmic algorithm schedules every instance of 
each incoming task according to its specific 
demands; it may reschedule periodic tasks in each 
period. For a dynamic algorithm like EDF, the 
upper bound of processor utilization is 100 per- 
cent. EDF is optimal in the sense that if a set of 
tasks can be scheduled by any priority assign- 
ment, it also can be scheduled by EDF. 

When a single-processor machine with priority 

scheduling applies EDF to the scheduling of con- 
tinuous-media data, process priorities are likely to 
be rearranged quite often. A priority-driven sys- 
tem scheduler like EDF assigns each task a priority 
according to its deadline. The highest priority is 
assigned to the task with the earliest deadline, the 
lowest to the one with the furthest. Common EDF 
systems usually provide only a restricted number 
of priorities. If  EDF has already assigned the pri- 
ority needed for a new process, the scheduler must 
rearrange the priorities of other processes until the 
required priority is free. In the worst case, the pri- 
orities of all processes have to be rearranged, 
which may cause considerable overhead. 

An extension of EDF is the time-driven sched- 
uler, which schedules tasks by deadlines instead 
of priorities. TDS handles overload situations by 
aborting tasks that can no longer meet their dead- 
lines. If  the situation continues, the scheduler 
removes tasks with a low “value density”-the 
importance of a task to the system. 

Periodic task T - 
o s  

Another priority-driven EDF scheduling algo- 
rithm” divides every task into a mandatory and 
an optional part. Tasks are scheduled with respect 
to the deadlines of their mandatory parts. A set of 
tasks is schedulable if all mandatory parts can 
meet the deadlines. A task is terminated accord- 
ing to the deadline of the mandatory part even if 
the task has not yet completed; the optional parts 
are then processed if the resource capacity is not 
fully utilized. 

In the case of continuous-media data, this 
method can be combined with the encoding of 
data according to their importance. Take, for 
example, a single uncompressed picture in a 
bitmap format. Each pixel of this monochrome 
picture is coded with 16 bits. The processing of the 
eight most significant bits is mandatory, whereas 
the processing of the eight least significant bits 
can be considered optional. This method allows 
more processes to be scheduled. In an overload sit- 
uation, the optional parts are aborted according 
to quality-of-service requirements (see “Negotiat- 
ing QOS,” below), decreasing the quality through 
media scaling. Alternatively, the user can intro- 

Figure 2. Any 
multimedia operating 
system must take into 
account the time 
constraints of the 
periodic task T, where 
s = startingpoint, 
e =processing time, 
d = deadline, and 
p =period. 
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duce QOS scaling parameter(s) that reflect the 
implementation. Overall, this approach avoids 
errors and improves system performance at the 
expense of media quality. 

Rate monotonic algorithm 
The rate-monotonic scheduling principle, 

introduced by Liu and Layland in 1973,9 is a stat- 
ic algorithm applied in real-time systems and 
operating systems by the National Aeronautics 
and Space Administration and the European Space 
Agency. It assigns static priorities to tasks at the 

task do not depend on the initiation or com- 
pletion of requests for any other task. 

4. Runtime for each request of a task-the maxi- 
mum time a processor requires to execute the 
task without interruption-is constant. 

5.Any nonperiodic task in the system has no 
required deadline. Typically such tasks initiate 
periodic or failure recovery tasks. They usual- 
ly displace periodic tasks. 

Deadlines dA d R  _. . -- 
d l  d2 d3 d4 d5 

High 

Low 

EDF 

Rate 

Figure 3. Of the 
preemptive schedulers, 
rate monotonic i s  more 
prone to context 
switching-changing 
over from processing 
video (lettered blocks) to 
processing audio 
(numbered blocks)- 
than EDF. 

dC 
d h  

Further work has shown 
that not all of these 
assumptions are always 
mandatory to employ the 
rate monotonic algo- 
rithm. * ] , I 2  

EDF versus rate 
monotonic 

Consider an audio and 
a video stream scheduled 
according to the rate 
monotonic algorithm. Let 
the audio stream have a 
rate of 75 blocks of sam- 
ples per second and the 

connection setup phase according to their request 
rates. Subsequently, each task is processed with 
the priority calculated at the beginning, with no 
further rearrangement of priorities required. The 
priority corresponds to the importance of a task 
relative to other tasks. 

The task with the shortest period gets the high- 
est priority, and the task with the longest period 
gets the lowest priority. It is an optimal, static, pri- 
ority-driven algorithm for preemptive, periodic 
jobs. Optimal in this context means that no other 
static algorithm can schedule a task set that the 
rate monotonic algorithm cannot also schedule. 

The following five assumptions are prerequi- 
sites to applying the rate monotonic algorithm: 

1.The requests for all tasks with deadlines are 
periodic. 

2.The processing of a single task must finish 
before the processing of the next task in the 
same data stream. 

3.  All tasks are independent. The requests of one 

t video stream a rate of 25 
frames per second. The 

priority assigned to the audio stream is then high- 
er than the priority assigned to the video stream. 
Messages arriving from the audio stream will 
interrupt the processing of the video stream, cre- 
ating context switches. 

If more than one stream is processed concur- 
rently in a system, more context switches are like- 
ly with a scheduler using the rate monotonic 
algorithm than one using EDF, as Figure 3 shows. 

The rate monotonic algorithm’s processor uti- 
lization is upper bounded. The least upper bound 
is U = In 2, or about 69 percent.’ Hence, we only 
need to check if the processor utilization is less 
than or equal to the given upper bound to find 
out whether a task set is schedulable. Most exist- 
ing systems check this by simply comparing 
processor utilization to the value of In 2. 

On the other hand, EDF can achieve a proces- 
sor utilization of 100 percent because all tasks are 
scheduled dynamically according to their dead- 
lines. In practice, this 100 percent value is reduced 
by the need to provide processing power capabil- 
ities for interrupt handling, context switching, 
and other basic tasks. Figure 4 shows an example 



of how the CPU can be 
utilized to 100 percent 
with EDF where rate 
monotonic scheduling 
fails. 

The rate monotonic 
upper bound of 69 per- 
cent represents the 
worst-case execution 
time; calculations using 
that figure lead to 
underutilized proces- 
sors. The problem of 
underutilizing the pro- 
cessor is aggravated by 
the fact that in most 
cases, the average task 
execution time is con- 
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siderably lower than the worst case. Therefore, to 
use the processor as efficiently as possible, sched- 
uling algorithms should be able to handle tran- 
sient processor overload. 

On average, the rate monotonic algorithm 
ensures that all deadlines will be met, even if the 
bottleneck utilization is well above 80 percent. 
With one deadline postponement, the deadlines 
are met on average when the utilization exceeds 
90 percent. The rate monotonic algorithm 
achieved a utilization bound of 88 percent for the 
Nowy's Inertial Navigation System.'j 

Applying the rate-monotonic algorithm 
One extension to this algorithm divides a task 

into a mandatory and an optional part. Processing 
of the mandatory part delivers an acceptable 
result, while the optional part refines the result. 
The mandatory part is scheduled according to the 
rate monotonic algorithm, though different poli- 
cies are suggested for scheduling of the optional 
part.'-l 

Systems with aperiodic tasks next to periodic 
ones must be able to schedule both types of tasks. 
I f  the aperiodic request is a continuous stream, 
such as video images in a slide show, we can trans- 
form it into a periodic stream by substituting n 
items of minimal duration for each timed data 
item. The number of streams increases, but since 
the life span decreases, the result remains 
unchanged. The stream is now periodic because 
every item has the same life span.'j 

If the stream is not continuous, we can apply a 
sporadic server to respond to aperiodic requests. 
The server has a budget of computation time 
reserved for aperiodic tasks that is refreshed t units 

of time after it has been exhausted or earlier. The 
server may preempt the execution of periodic 
tasks only if the computation budget is not 
exhausted. Afterwards it can only continue to exe- 
cute aperiodic tasks with a background priority. 
After the budget is refreshed, execution resumes 
at the server's assigned priority. The sporadic serv- 
er is especially suitable for events that occur rarely 
but must be handled quickly, such as the move- 
ments of a telepointer in a computer-supported 
cooperative work (CSCW) application." 

The rate monotonic algorithm is particularly 
suitable for continuous-media data because it 
makes optimal use of their periodicity. Since it is 
a static algorithm, it rarely rearranges priorities 
and hence-in contrast to EDF-accrues no sched- 
uling overhead to determine the next task. 
Problems emerge with data streams that have a 
very diverse processing time per message as 
MPEG-2 specifies, for example, a compressed 
video stream where one of five pictures is a full 
picture and all others are updates to that picture. 
The simplest solution is to schedule tasks accord- 
ing to their maximum data rate, which would 
decrease processor utilization. In any case, during 
the CPU's idle time all kinds of noncritical tasks 
can be processed. 

Least-laxity-first algorithm 
Besides EDF and rate monotonic, other sched- 

uling algorithms have been evaluated for the pro- 
cessing of continuous-media data. The most 
prominent is least laxity first, which schedules the 
task with the shortest remaining laxity-the time 
between the current time and the deadline, minus 
the remaining processing time-first.I6 LLF is an 

Figure 4. EDF can 
schedule tasks 
successfully a t  processor 
utilization rates up to 
loopercent, while rate 
monotonic's utilization 
has a worst-case upper 
bound of 69percent 
before failure. 
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optimal, dynamic algorithm for 
exclusive resources. It is also optimal 
for multiple resources if the ready 
times of the real-time tasks are the 
same. 

Since laxity is a function of dead- 
line, processing time, and current 
time, the processing time cannot be 
specified in advance. The calculation 
of laxity also assumes the worst case 
and is inexact. Moreover, the laxity 
of waiting processes changes over 
time. During runtime of one task, 
another task may get a lower laxity, 

causing it to preempt the running task. Conse- 
quently, tasks can preempt each other several 
times without a new task being dispatched, which 
can cause numerous context switches. At each 
scheduling point (either when a process becomes 
ready to run or at the end of a time slice) the lax- 
ity of each task must be determined anew, which 
creates a greater overhead than EDF. Since we usu- 
ally have only a single resource to schedule, LLF 
has no advantage over EDF. 

In future multimedia systems with multiple 
processors, LLF might look better. Most multi- 
media systems with preemptable tasks employ a 
variation of the rate monotonic algorithm. So far, 
no other scheduling technique has proven as suit- 
able for multimedia data handling as the EDF and 
rate monotonic approaches. 

Resource management 
Multimedia systems with integrated audio and 

video processing often operate at the limit of their 
capacity, even with data compression and use of 
new technologies. Current computers do not allow 
any kind of manipulation and communication of 
these data according to their deadlines without 
reservations and real-time process management. 

A multimedia system must enforce timing 
guarantees for continuous-media processing at 
every hardware and software component on the 
data path. Timing requirements depend on the 
type of media and the nature of the supported 
applications. For instance, a video image should 
not be presented late because the communication 
system was busy with a traditional discrete-data 
transaction. In any realistic scenario, we 
encounter several multimedia applications that 
access shared resources concurrently. Hence, even 
systems with high-bandwidth networks and huge 
processing capabilities require real-time mecha- 
nisms to guarantee data delivery. 

In distributed multimedia systems, “resource 
management” covers several computers as well as 
communication networks. It allocates all resources 
involved in data transfer between sources and 
sinks. For instance, today a CD-ROM XA device 
has to be allocated exclusively: Transferring video 
data from the device takes up to 20 percent of the 
capacity of each CPU on the data path, up to 40 
percent of the graphic processor’s capacity, and a 
certain amount of network bandwidth. At the 
connection establishment phase, resource man- 
agement ensures that the new connection does 
not violate performance guarantees already pro- 
vided to existing connections. 

Resources 
We can extend the notion of resource man- 

agement to cover the CPU (process management), 
memory management, the file system (file man- 
agement), and device management. To simplify, I 
generalized the issue of reservation for all 
resources into a generic notion of resources. 

A resource is a system entity that tasks require 
for manipulating data. Each resource has a set of 
distinguishing characteristics classified using the 
following scheme:l 

I Active orpassive. An active resource, such as the 
CPU or a network adapter for protocol pro- 
cessing, provides a service. A passive resource, 
such as the main memory, communication 
bandwidth, or a file system, denotes some sys- 
tem capability required by active resources. 

I Exclusive or shared. Active resources are often 
exclusive; passive resources can usually be 
shared among processes. 

I Single or multiple. A resource type that exists 
only once in the system is single, otherwise it 
is multiple. In a transputer-based multiproces- 
sor system, an individual CPU is a multiple 
resource. 

For example, an IS0  9660 file system stored on an 
optical disc in CD-ROM XA format is a passive, 
shared, single resource, while process manage- 
ment belongs to the categories of active, shared, 
and (most often) single resources. 

Each resource has a capacity measured by a 
task‘s ability to perform in a given time span using 
the resource. In this context, capacity refers to 
CPU capacity, frequency range, or the amount of 
storage, for example. Real-time scheduling only 



considers the temporal division of resource capac- 
ity among real-time processes. 

QOS requirements 
Each component of a multimedia system must 

fulfill the requirements of multimedia applica- 
tions and data streams. Resource management 
maps these requirements onto system capacity. 
We can classify the transmission and processing 
requirements of local and distributed multimedia 
applications by four main characteristics: 

1. throughput, 

2. delay (local or global), 

3 .  jitter, and 

4. reliability. 

The throughput is determined by the data rate a 
connection needs to satisfy the application 
requirements, as well as the size of the data units. 
The local delay is the maximum time a resource 
takes to complete a certain task. The end-to-end, 
or global, delay is the total delay for a data unit 
traveling from a source to its destination. The jit- 
ter, or delay jitter, determines the maximum 
allowed variance in the arrival of data at the 
destination. 

The reliability requirement defines error- 
detection and -correction mechanisms used for 
the transmission and processing of multimedia 
tasks. Errors can be ignored, indicated, or correct- 
ed. For instance, error correction through retrans- 
mission is rarely appropriate for time-critical data 
because the retransmitted data will usually arrive 
late. In such a case, a forward error-correction 
mechanism would be more useful. Reliability also 
refers to CPU errors caused by delays in process- 
ing a task which violate the demanded deadlines. 
In accordance with communication systems ter- 
minology, these requirements are also known as 
quality-of-service (QOS) parameters. 

Negotiating QOS 
A typical realization of resource allocation and 

management is based on the interaction between 
clients and resource managers. The client selects 
the resource and requests a resource allocation by 
indicating its requirements through a QOS speci- 
fication. This is equivalent to a workload request. 
First the resource manager checks its own resource 
utilization and decides if the reservation request 

can be served. The resource manager stores all 
existing reservations to guarantee that each 
request receives its share of the resource capacity. 
This component also negotiates the reservation 
request with other resource managers if necessary. 

During the connection establishment phase, 
the QOS parameters are usually 
negotiated between the requester 
(client application) and the ad- 
dressed resource manager. In the 
simplest case, negotiation entails the 
resource manager checking whether 
the QOS parameters the application 
specified can be guaranteed. A more 
elaborate method is to optimize sin- 
gle parameters. In this case the appli- 
cation sets the values for two 
parameters, for example, throughput 
and reliability; the resource manag- 
er then calculates the best achievable 
value for the third parameter, delay. 
Negotiating the parameters for end- 
to-end connections over one or 
more computer networks requires 
resource reservation protocols like 
ST-I1 or RSVP. In such protocols, the 
resource managers of the single com- 
ponents within the distributed sys- 
tem allocate the necessary resources. 

A resource manager and the indi- 
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vidual schedulers provide services for 
the four phases of the allocation and management 
process: 

1. Scliedulability test. The resource manager 
checks whether, given the QOS parameters- 
throughput and reliability, for example-there 
is enough resource capacity to handle the 
additional request. 

2. Quality-of-service calculation. The resource man- 
ager calculates the best possible performance- 
in this example, the lowest delay-the 
resource can guarantee for the new request. 

3 .  Resource reservation. The resource manager allo- 
cates the capacity required to meet the QOS 
guarantees for each request. 

4. Resource scheduling. Incoming messages are 
scheduled according to the given QOS guar- 
antees. In process management, for instance, 
the scheduler allocates resources at the 
moment the data arrives for processing. 



During the last phase, a scheduling algorithm is 
defined for each resource. The schedulability test, 
QOS calculation, and resource reservation depend 
on the algorithm used by the scheduler: Before 
making a reservation, you must know how much 
capacity you are allowed to distribute, as deter- 
mined by the algorithm chosen (100 percent for 
EDF, 69 percent for rate monotonic). 
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Allocation scheme 
Resources can be reserved in 

either a pessimistic or optimistic 
way. The pessimistic, or guaranteed, 
approach avoids resource conflicts 
by making reservations for the worst 
case; that is, reserving resource band- 
width for the longest processing 
time and the highest rate a task 
might ever need. This can lead to 
underutilization of resources. In a 
multimedia system, however, dis- 
crete media tasks can use the 
remaining processor time-the time 
reserved for traffic but not used- 
and avoid wasting resource capacity. 
The pessimistic method results in a 
guaranteed QOS. 

The optimistic, or statistical, approach reserves 
resources according to an average workload only, 
which could overbook resources. QOS parameters 
are met as far as possible. Resources are highly uti- 
lized, though an overload situation may result in 
failure. The optimistic approach, an extension of 
the pessimistic approach, requires a monitor to 
detect and solve resource conflicts. The monitor 
may, for instance, preempt processes according to 
their importance. 

File management 
The file system provides access and control 

functions for file storage and retrieval. From the 
users’ viewpoints, the file system allows them to 
organize and structure files, changing how the files 
are represented externally. The internals are more 
important in our context: how the system repre- 
sents information in files and how it accesses those 
files in secondary storage. In traditional file sys- 
tems, the information types stored in files are 
sources, objects, program libraries and executables, 
numeric data, text, payroll records, and so on. In 
multimedia systems, stored information also 
includes video and audio, with real-time read and 
write demands that create additional requirements 
in the design and implementation of file systems. 

Compared to the exponentially increased per- 
formance of processors and networks over the past 
decade, storage devices have become only mar- 
ginally faster. The effect of this increasing dispar- 
ity in speed is the search for new storage structures 
and storage and retrieval mechanisms. Applied to 
file systems, continuous-media data differs from 
discrete data in the following ways: 

I Real-time characteristics. The retrieval, compu- 
tation, and presentation of continuous media 
is time-dependent: The data must be present- 
ed (read) before a set deadline with minimal jit- 
ter. Thus, algorithms for the storage and 
retrieval of such data must consider time con- 
straints and include additional buffers to 
smooth the data stream. 

I File size. Compared to text and graphics, video 
and audio have very large storage space 
requirements. Since the file system has to store 
information ranging from small, unstructured 
units like text files to large, highly structured 
units like video and associated audio, it has to 
organize the data on disk in a way that effi- 
ciently uses the limited storage. 

I Multiple data streams. A multimedia system has 
to support various media at once. It not only 
has to ensure that all of them get a sufficient 
share of the resources, it must also consider 
tight relations between streams arriving from 
different sources, such as the synchronized 
audio and video for a movie. 

There are two basic approaches to supporting 
continuous media in file systems. In the first 
approach, the organization of files on disk 
remains as it is, with the necessary real-time sup- 
port provided through special disk-scheduling 
algorithms and enough buffer capacity to avoid 
jitter. The second approach optimizes the organi- 
zation of audio and video files, especially on dis- 
tributed hierarchical storage like disk arrays. The 
basic idea is to improve the throughput and 
capacity by storing the data of each audio and 
video file on several volumes. Disk 1/0 bandwidth 
is maximized by striping, while seek times are 
minimized by grouping and sorting.” 

Storage methods 
In conventional file systems, the main goal of 

file organization is to use storage capacity effi- 
ciently (to reduce internal and external fragmen- 



tation) and to allow arbitrary deletion and exten- 
sion of files. In multimedia systems, however, the 
main goal is to provide constant, timely retrieval 
of data. Internal fragmentation occurs when 
blocks of data are not entirely filled. On average 
the last block of a file is only half utilized, so large 
blocks lead to a larger waste of storage. External 
fragmentation mainly occurs with contiguous stor- 
age. After deletion of a file, the resulting gap can 
only be filled by a file of the same size or smaller, 
leaving small, unused fractions between files. This 
leads to a dilemma: Either storage space for con- 
tinuous media is wasted by internal fragmentation 
or huge amounts of data must be copied frequent- 
ly to avoid external fragmentation. 

Real-time storage. Providing an adequate 
buffer for each data stream and employing disk- 
scheduling algorithms optimized for real-time 
storage and retrieval of data offers flexibility at the 
cost of scattering the data blocks of single files. It 
also avoids external fragmentation and provides 
access to the same data by several streams via ref- 
erences. Even when using only one stream, this 
might be advantageous; for instance, the system 
could access the same block twice to play a repeat- 
ing phrase in a sonata. However, even with opti- 
mized disk scheduling the data retrieval phase still 
requires large buffers to smooth jitter because of 
the large seek operations during playback. 
Therefore, this method can produce long initial 
delays at the retrieval of continuous media. 

Another problem is the restricted transfer rate. 
Upcoming disk arrays, which might have 100 or 
more parallel heads, will achieve projected seek 
and latency times of less than 10 milliseconds, 
with a block size of 4 Kbytes at a transfer rate of 
0.32 Gbits per second. However, this is still not 
enough for simultaneous retrieval of four or more 
production-level MPEG-2 videos compressed in 
HDTV quality, which may require transfer rates of 
up to 100 Mbps.l*l9 

Continuous storage. Approaches that use spe- 
cific disk layout take the specialized nature of con- 
tinuous-media data into account to minimize the 
cost of retrieving and storing streams. The much 
greater size of continuous-media files and the fact 
that they will usually be retrieved sequentially 
because of the nature of operations performed on 
them (such as play, pause, and fast forward) call 
for optimization of the disk layout. 

Lougher and Shepherd’sLo application-related 
experience led them to two conclusions: (1) 

Continuous-media streams predominantly belong 
to the write-once-read-many category (WORM; 
see “Disk-scheduling algorithms,” below), and (2) 
streams recorded at the same time are likely to be 
played back at the same time (for example, the 
audio and video of a movie). Hence, we should 
store continuous-media data in large data blocks 
contiguously on disk, Files likely to be retrieved 
together are grouped together on the disk, thus 
minimizing interference due to concurrent access 
of these files. With such a disk layout, the buffer 
requirements and seek times decrease. 

The disadvantages of the contiguous approach 
are external fragmentation and copying overhead 
during insertion and deletion. To avoid these 
problems without scattering blocks in a random 
manner over the disk, a multimedia file system can 
provide constrained block allocation of the con- 
tinuous media.21 To serve the continuity require- 
ments during allocation, the file system should 
introduce read-ahead and buffering 
of a determined number of blocks.22 

Interleaved placement. Some 
systems using scattered storage 
employ a special disk-space alloca- 
tion mechanism for fast and efficient 
access. Abbott performed the pioneer 
work in this field.z1 He was especially 
concerned about the size of single infor 
blocks, their positions on disk, and 
the placement of different streams. Storage and 
With interleaved placement, all rith 
blocks of each stream are in close recording 
physical proximity on disk. Two pos- 
sibilities for interleaved placement methods. 
are contiguous and scattered. With 
interleaved data streams, synchro- 
nization is much easier to handle. 
On the other hand, inserting and deleting single 
parts of data streams become more complicated. 

- 
Disk-scheduling algorithms 

In general, disks can be characterized in two dif- 
ferent ways. The first is how they store informa- 
tion: There are rewritable disks, WORM disks, and 
read-only disks like CD-ROMs. The second dis- 
tinctive feature is the recording method, either 
magnetic or optical. The main differences between 
the methods are the access time and the track 
capacity: The seek time on magnetic disks is typi- 
cally about 10 ms, whereas on optical disks 200 ms 
is still a common lower bound. Magnetic disks 
have a constant rotation speed, or constant angu- 
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lar velocity (CAV). Thus, while the 
density varies, the storage capacity is 
the same on inner and outer tracks. 
Optical disks have varying rotation 
speed, or constant linear velocity 
(CLV), so the storage density is the 
same on the whole disk while the 
capacity varies. The different record- 
ing methods mean that magnetic 
and optical disks make use of differ- 
ent algorithms. File systems on CD- 
ROMs are defined by I S 0  9660, with 
very few variations allowed. Hence, I 
will focus on algorithms applicable 
to magnetic storage devices. 

The overall goal of disk schedul- 
ing in multimedia systems is to meet 
the deadlines of all time-critical 

tasks. Closely related is the goal of keeping the 
necessary buffer space requirements low. As many 
streams as possible should be served concurrent- 
ly, but aperiodic requests should also be schedu- 
lable without delaying service for a large amount 
of time. The scheduling algorithm has to find a 
balance between time constraints and efficiency. 

The EDF strategy. Let us first look at the EDF 
scheduling strategy, described above for CPU 
scheduling but used in file systems as well. In the 
context of file systems, EDF would read the block 
of the stream with the nearest deadline first. The 
employment of strict EDF results in poor through- 
put and an excessive seek time. Further, since EDF 
is most often applied as a preemptive scheduling 
scheme, the costs for preempting one task and 
scheduling another are high. The overhead caused 
by this is on the same order of magnitude as at 
least one disk seek. Hence, a file system must adapt 
EDF or combine it with other file system strategies. 

The SCAN-EDF strategy. This combines the 
seek optimization of the well-known traditional 
disk-scheduling method SCAN and the real-time 
guarantees of the EDF mechanisms in the follow- 
ing way:2i As in EDF, the request with the earliest 
deadline is always served first. Among requests 
with the same deadline, the one that is first 
according to the scan direction is served first. The 
SCAN algorithm repeats this principle until no 
request with this deadline is left. 

Since the optimization only applies for 
requests with the same deadline, its efficiency 
depends on how often it can be applied-that is, 
how many requests have the same or a similar 

deadline. The following trick can increase effi- 
ciency: Since all requests have release times that 
are multiples of the period p, all requests have 
deadlines that are multiples of the period p .  
Therefore the requests can be grouped together 
and served accordingly. Requests with different 
data-rate requirements can supplement SCAN- 
EDF with a periodic fill policy to let all requests 
have the same deadline. 

SCAN-EDF can easily be implemented by 
slightly modifying EDF. If D, is the deadline of task 
i and N ,  is the track position, then the deadline 
can be modified to be D, + f (N , ) .  The function f()  
converts the track number of i into a small per- 
turbation that defers the deadline. Compared to 
pure EDF and different variations of SCAN, SCAN- 
EDF with deferred deadlines performs well in 
multimedia environments.24 

Group sweeping strategy. This variation of 
SCAN, serves requests in round-robin cycles.2s To 
reduce disk arm movements, GSS divides the set 
of n streams into g groups, served in fixed order. 
Individual streams within a group are served 
according to SCAN; therefore the time or order of 
individual streams within a group is not fixed. In 
one cycle a specific stream may be the first served, 
but in another cycle it may be the last in the same 
group. A smoothing buffer, sized according to the 
cycle time and data rate of the stream, assures 
continuity. Since the data must be buffered in 
GSS, the playout can start at the end of the group 
in which the first retrieval takes place. Whereas 
SCAN requires buffers for all streams, GSS can 
reuse the buffer for each group. GSS is a trade-off 
between optimizations of buffer space and arm 
movement. 

To provide the requested guarantees for con- 
tinuous-media data, we can introduce a joint 
deadline mechanism: We assign to each group of 
streams one deadline, the joint deadline. This dead- 
line is the earliest deadline of all streams in the 
group. Streams are grouped in such a way that all 
of them have similar deadlines. 

Mixed strategy. Abbott introduced a mixed 
strategy based on the shortest seek strategy (also 
called greedy strategy) and the balanced strategy.'' 
Every time data are retrieved from disk, they are 
transferred into buffer memory allocated for the 
data stream. From there the application process 
retrieves the data. The balanced strategy attempts 
to maximize transfer efficiency by minimizing 
seek time and latency and to serve process require- 



ments with a limited amount of buffer space. 
While shortest seek serves the process whose 

data block is closest to the disk head first, thus sav- 
ing seek time, the balanced strategy serves the 
process with the least amount of buffered data first. 
The crucial part of the mixed algorithm is deciding 
which of the two strategies to apply. For shortest 
seek, two criteria must be fulfilled: The number of 
buffers for all processes should be balanced (that is, 
all processes should have nearly the same number 
of buffered data), and the overall required band- 
width should be sufficient for the number of active 
processes so that none of them will try to immedi- 
ately read data out of an empty buffer. 

Abbot introduced the term urgency in an 
attempt to meet both  riter ria.?^ This number mea- 
sures both the relative balance of read processes 
and the number of them. If the urgency is large, 
the balanced strategy is best; if it is small, it is safe 
to apply the shortest seek algorithm.2h 

Device management 
Device management and access allows the 

operating system to integrate all hardware com- 
ponents. The physical device is represented by an 
abstract device driver, which hides its physical 
characteristics. In a conventional system such 
devices include a graphics adapter card, hard disk, 
keyboard, and mouse. Multimedia systems add 
devices like cameras, microphones, speakers, and 
dedicated audio and video storage devices. Yet in 
most existing multimedia systems, such devices 
are seldom integrated by device management and 
the respective drivers. 

Addressing of a camera can be handled much 
like addressing of a keyboard. Existing operating 
system extensions for multimedia usually provide 
one common system-wide interface for the con- 
trol and management of data streams and devices. 
In Windows and OS/2, this interface is known as 
the Media Control Interface (MCI). The multi- 
media extensions of Windows, for example, pro- 
vide the following classes of function calls: 

I System cominands are served by a central 
instance, not forwarded to the single device 
driver (MCI driver). An example of such a com- 
mand is the query concerning all devices con- 
nected to the system, “Sysinfo.” 

I Corripirlsory con~mands include the query for 
specific characteristics (“capability info”) and 
the opening of a device (“open”). Each device 
driver must be able to process them. 

I Basic cornmarids refer to characteristics that con- 
stitute all devices. To process such a command, 
a device driver must consider all variants and 
parameters of the command. A data transmis- 
sion, for example, is typically started by the 
basic command “play.” 

I Extended conzrnanrls may refer to both device 
types and special single devices. The “seek” 
command for the positioning on an audio CD 
is an example. 

Synchronization 
Syizchroizization denotes the temporal relation- 

ship between different media data. A typical 
example is lip synchronization, which requires a 
tight temporal relationship between audio and 
video data. Most often this type of synchroniza- 
tion is guaranteed and enforced by having audio 
and the related video data stored and transmitted 
in an interleaved way defined at the MPEG system 
layer. Otherwise, time-stamping of the media 
packets (LDUs) and appropriate buffering at the 
presentation system allows the oper- 
ating system to present the related 
data units of the different streams 
“in synch“ to the user. 

Memory management 
The memory manager assigns 

physical resource memory to a single 
process. Virtual memory is mapped 
onto available actual memory. The 
memory manager swaps less fre- 
quently used data between main 
memory and external storage using 
paging. Pages are transferred back 
into main memory when a process 
requires data on them. Note that 
continuous-media data must not be 
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temporarily paged out of main memory. If a page 
of virtual memory containing code or data 
required by a real-time process is not in real mem- 
ory when the process accesses it, a page fault 
occurs, meaning the page must be read from disk. 
Page faults seriously affect the real-time perfor- 
mance, so they must be avoided. One approach is 
to lock code and/or data into real memory. 
However, take care: Real memory is a very scarce 
resource to the system. Committing real memory 
by pinning (locking) will decrease overall system 
performance. For example, the typical AIX kernel 
will not allow more than about 70 percent of real 
memory to be committed to pinned pages. 
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The transmission and processing of continuous 
data streams by several components require very 
efficient data transfer restricted by time con- 
straints. Memory allocation and release functions 
provide well-defined access to shared memory 
areas. Most cases require no real data processing, 
only a data transfer. For example, say a digital 
camera is the source and the presentation process 
is the sink. The essential task of the other compo- 
nents is the exchange of continuous-media data 
with relatively high data rates in real time. 
Processing involves computing, adding, inter- 
preting, and stripping headers. The actual imple- 
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Figure 5.  Within one 
multimedia computer, 
real-time and non-real- 
time environments use 
specialized architectures 
to meet direring data 
requirements. 

System architectures 
The employment of continuous media in 

multimedia systems leads to new system architec- 
tures. A typical multimedia application does not 
require the application itself to process audio and 
video. Data is obtained from a source, such as a 
microphone, camera, disk, or network, and for- 
warded to a sink, such as a speaker, display, or net- 
work. The requirements of continuous-media data 
are satisfied best if the data takes the shortest pos- 
sible path through the system by copying data 
directly from adapter to adapter. The program 
then merely sets the correct switches for the 
dataflow by connecting sources to sinks. Hence, 
the application itself never really touches the data, 
unlike in traditional processing. 

A problem with direct copying is losing control 
over QOS parameters and device-specific headers 
and trailers. In multimedia systems, such an 
adapter-to-adapter connection is defined by the 
capabilities of the two adapters involved and the 
bus performance. An MPEG-2 program stream 
contains several layers, each with headers and 
trailers, whereas a communication protocol on 
the network adapter contains more information 
about the actual payload. Hence the multimedia 
application opens devices, establishes a connec- 
tion between them, starts the dataflow, and 
returns to other duties. 

As previously stated, the overriding need of 
multimedia applications is to meet temporal 
requirements at presentation time. Therefore, 
multimedia data is handled in a real-time envi- 
ronment: Its processing is scheduled according to 
inherent timing requirements of multimedia data. 
On a multimedia computer, the real-time envi- 
ronment will usually coexist with a non-real-time 
environment (NRTE), which deals with all data 
without timing requirements (Figure 5). Multi- 
media I/O devices in general can be accessed from 
both environments. A video frame, for example, 
is passed from the RTE to the display. The estab- 
lishment of communication connections at the 
start of a stream does not need to obey timing 
requirements, but the data processing for estab- 
lished connections does. 

All control functions are performed in the 
NRTE. The application usually only calls these 
control functions and does not actively handle 
continuous-media data. Therefore the multimedia 
application itself typically runs in the NRTE, 
shielded from the RTE. 

In some scenarios, users may want applications 
to process continuous-media data in an applica- 

mentation can be realized either with external 
devices and dedicated hardware in the computer 
or with software components. 

Early prototypes of multimedia systems incor- 
porated audio and video based on external data 
paths only. Memory management, in that case, 
merely controlled an external switch. A first step 
towards integration was incorporation of the 
external switch function into the computer by 
employing dedicated adapter cards that can 
switch data streams with varying data rates. 
Today, complete integration achieves a fully digi- 
tal approach within the computer-a pure soft- 
ware solution. Data is transmitted between the 
single components in real time. Copy operations 
are reduced as far as possible to the exchange of 
pointers and the check of access rights, which 
requires access to a shared address space. Data can 
also be transferred directly between different 
adapter cards. The transfer of continuous-media 
data takes place in a real-time environment. This 
exchange is controlled but not necessarily exe- 
cuted by the application. 



tion-specific way. In this model, such an applica- 
tion comprises a module running as a stream han- 
dler in the RTE, while the rest of the applications 
run in the NRTE using the available stream control 
interfaces. (Stream handlers are all entities in the 
RTE in charge of multimedia data. Typical stream 
handlers are filter and mixing functions, but parts 
of the communication subsystem can be treated in 
the same way.) System and application programs 
such as communication protocol processors use 
this programming in the RTE. While applications 
like authoring tools and media presentation pro- 
grams are relieved from the burden of program- 
ming in the RTE, they interface with and control 
the RTE services. An application determines pro- 
cessing paths and controls devices and paths to 
meet its data processing needs by defining the 
sinks, sources, and quality of service requested. 

To reduce data copying, the RTE employs 
buffer management functions to implement data 
transfer. This buffer management is located 
between the stream handlers. Each stream handler 
has endpoints through which data units flow. The 
stream handler consumes data units from one or 
more input endpoints and generates data units 
through one or more output endpoints. 

Applications access stream handlers by estab- 
lishing sessions with them. Depending on the 
required QOS of a session, an underlying resource 
management subsystem multiplexes the capacity 
of the underlying physical resources among the 
sessions. NRTE control operations manage the RTE 
dataflow through the stream handlers. These func- 
tions make up the stream management system in 
the multimedia architecture. Some operations are 
provided by all stream handlers, such as operations 
to establish sessions and to connect their end- 
points, and some operations are specific to an indi- 
vidual stream handler (they usually determine the 
content of a multimedia stream and apply to par- 
ticular 1 / 0  devices). 

The stream management subsystem specifies 
stream synchronization on a connection basis, 
expressed using the notions of clock or logical 
time systems. It determines points in time at 
which the processing of data units shall start. 
Regular streams can use the stream rates or 
sequence numbers to relate data units to syn- 
chronization points. Time stamps are a more ver- 
satile means for synchronization, as they can also 
be used for nonperiodic traffic. Synchronization 
is often implemented by delaying the execution 
of a thread or by delaying the receive operation on 
a buffer exchanged between stream handlers. 

Conclusion 
Scheduling concerns are paramount in multi- 

media systems. The need to deliver continuous 
media on time while accommodating discrete data 
informs every aspect of a multimedia operating sys- 
tem. It affects how the system manages processes, 
resources, files, and memory. The concepts em- 
ployed by current multimedia operating systems 
were initially developed for real-time systems and 
were adapted to the requirements of multimedia 
data. Today's operating systems incorporate these 
functions either as device drivers or as extensions 
based on the existing operating system scheduler 
and file systems. The next step will bring an inte- 
gration of real-time processing and non-real-time 
processing in the native system ke~nel.~' ,?~ MM 
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